No Arabic abstract
Topological insulators are promising for spintronics and related technologies due to their spin-momentum-locked edge states, which are protected by time-reversal symmetry. In addition to the unique fundamental physics that arises in these systems, the potential technological applications of these protected states has also been driving TI research over the past decade. However, most known topological insulator materials naturally contain spinful nuclei, and their hyperfine coupling to helical edge states intrinsically breaks time-reversal symmetry, removing the topological protection and enabling the buildup of dynamic nuclear spin polarization through hyperfine-assisted backscattering. Here, we calculate scattering probabilities and nuclear polarization for edge channels containing up to $34$ nuclear spins using a numerically exact analysis that exploits the symmetries of the problem to drastically reduce the computational complexity. We then show the emergence of universal scaling properties that allow us to extrapolate our findings to vastly larger and experimentally relevant system sizes. We find that significant nuclear polarization can result from relatively weak helical edge currents, suggesting that it may be an important factor affecting spin transport in topological insulator devices.
Helical edge states of two-dimensional topological insulators show a gap in the Density of States (DOS) and suppressed conductance in the presence of ordered magnetic impurities. Here we will consider the dynamical effects on the DOS and transmission when the magnetic impurities are driven periodically. Using the Floquet formalism and Greens functions, the system properties are studied as a function of the driving frequency and the potential energy contribution of the impurities. We see that increasing the potential part closes the DOS gap for all driving regimes. The transmission gap is also closed, showing an pronounced asymmetry as a function of energy. These features indicate that the dynamical transport properties could yield valuable information about the magnetic impurities.
We use the bulk Hamiltonian for a three-dimensional topological insulator such as $rm Bi_2 Se_3$ to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
We present a microscopic theory of the chiral one-dimensional electron gas system localized on the sidewalls of magnetically-doped Bi$_2$Se$_3$-family topological insulator nanoribbons in the quantum anomalous Hall effect (QAHE) regime. Our theory is based on a simple continuum model of sidewall states whose parameters are extracted from detailed ribbon and film geometry tight-binding model calculations. In contrast to the familiar case of the quantum Hall effect in semiconductor quantum wells, the number of microscopic chiral channels depends simply and systematically on the ribbon thickness and on the position of the Fermi level within the surface state gap. We use our theory to interpret recent transport experiments that exhibit non-zero longitudinal resistance in samples with accurately quantized Hall conductances.
Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly-sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and in particular the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.
Quantum spin Hall insulators are characterized by topologically protected counterpropagating edge states. Here we study the dynamical response of these helical edge states under a time-dependent flux biasing, in the presence of a heat bath. It is shown that the relaxation time of the edge carriers can be determined from a measurement of the dissipative response of topological insulator disks. The effects of various perturbations, including Zeeman coupling and disorder, are also discussed.