Do you want to publish a course? Click here

First demonstration of gamma-ray imaging using balloon-borne emulsion telescope

67   0   0.0 ( 0 )
 Added by Hiroki Rokujo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We promote the precise gamma-ray observation project Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE), which uses balloon-borne emulsion gamma-ray telescopes. The emulsion telescope realizes observations with high angular resolution, polarization sensitivity, and large aperture area in the 0.01--100 GeV energy region. Herein, we report the data analysis of emulsion tracks and the first demonstration of gamma-ray imaging via an emulsion telescope by using the flight data from the balloon experiment performed in 2015 (GRAINE 2015). The emulsion films were scanned by the latest read-out system for a total area of 41 m$^2$ in three months, and then the gamma-ray event selection was automatically processed. Millions of electron-pair events are accumulated in the balloon-borne emulsion telescope. The emulsion telescope detected signals from a calibration source (gamma rays from the interaction of cosmic rays with an aluminum plate) with a high significance during the balloon observation and created a gamma-ray image consistent with the source size and the expected angular resolution in the energy range of 100--300 MeV. The flight performance obtained in the GRAINE 2015 experiment proves that balloon-borne emulsion telescope experiments with larger area are feasible while maintaining expected imaging performance.



rate research

Read More

Detecting the first electron pairs with nuclear emulsion allows a precise measurement of the direction of incident gamma-rays as well as their polarization. With recent innovations in emulsion scanning, emulsion analyzing capability is becoming increasingly powerful. Presently, we are developing a balloon-borne gamma-ray telescope using nuclear emulsion. An overview and a status of our telescope is given.
138 - Mark Pearce 2011
The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The polarisation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.
Linear polarization of high-energy gamma-rays (10 MeV-100 GeV) can be detected by measuring the azimuthal angle of electron-positron pairs and observing the modulation of the azimuthal distribution. To demonstrate the gamma-ray polarization sensitivity of emulsion, we conducted a test using a polarized gamma-ray beam at SPring-8/LEPS. Emulsion tracks were reconstructed using scanning data, and gamma-ray events were selected automatically. Using an optical microscope, out of the 2381 gamma-ray
We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescopes azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s$^2$, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.
The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300L $^4$He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a $^3$He sorption refrigerator all backed by a liquid helium pumped pot operating at 2K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70$%$ will be dedicated to observations for BLAST scientific goals and the remaining 30$%$ will be open to proposals from the wider astronomical community through a shared-risk proposals program.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا