Do you want to publish a course? Click here

Results of the first NaI scintillating calorimeter prototypes by COSINUS

70   0   0.0 ( 0 )
 Added by Florian Reindl
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over almost three decades the TAUP conference has seen a remarkable momentum gain in direct dark matter search. An important accelerator were first indications for a modulating signal rate in the DAMA/NaI experiment reported in 1997. Today the presence of an annual modulation, which matches in period and phase the expectation for dark matter, is supported at > 9$sigma$ confidence. The underlying nature of dark matter, however, is still considered an open and fundamental question of particle physics. No other direct dark matter search could confirm the DAMA claim up to now; moreover, numerous null-results are in clear contradiction under so-called standard assumptions for the dark matter halo and the interaction mechanism of dark with ordinary matter. As both bear a dependence on the target material, resolving this controversial situation will convincingly only be possible with an experiment using sodium iodide (NaI) as target. COSINUS aims to even go a step further by combining NaI with a novel detection approach. COSINUS aims to operate NaI as a cryogenic calorimeter reading scintillation light and phonon/heat signal. Two distinct advantages arise from this approach, a substantially lower energy threshold for nuclear recoils and particle identification on an event-by-event basis. These key benefits will allow COSINUS to clarify a possible nuclear recoil origin of the DAMA signal with comparatively little exposure of O(100kg days) and, thereby, answer a long-standing question of particle physics. Today COSINUS is in R&D phase; in this contribution we show results from the 2nd prototype, albeit the first one of the final foreseen detector design. The key finding of this measurement is that pure, undoped NaI is a truly excellent scintillator at low temperatures: We measure 13.1% of the total deposited energy in the NaI crystal in the form of scintillation light (in the light detector).



rate research

Read More

At present the results in the field of direct dark matter search are in tension: the positive claim of DAMA/LIBRA versus null results from other experiments. However, the comparison of the results of different experiments involves model dependencies, in particular because of the different target materials in use. The COSINUS R&D project aims to operate NaI as a cryogenic calorimeter. Such a detector would not only allow for a direct comparison to DAMA/LIBRA, but would also provide a low(er) nuclear recoil threshold and particle discrimination.
The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop a cryogenic scintillating calorimeter using NaI as target crystal for direct darkmatter search. Dark matter particles interacting with the detector material generate both a phonon signal and scintillation light. While the phonon signal provides a precise determination of the deposited energy, the simultaneously measured scintillation light allows for a particle identification on an event-by-event basis, a powerful tool to study material-dependent interactions, and to suppress backgrounds. Using the same target material as the DAMA/LIBRA collaboration, the COSINUS technique may offer a unique possibility to investigate and contribute information to the presently controversial situation in the dark matter sector. We report on the dedicated design planned for the NaI proof-of-principle detector and the objectives of using this detection technique in the light of direct dark matter detection.
Recently there is a flourishing and notable interest in the crystalline scintillator material sodium iodide (NaI) as target for direct dark matter searches. This is mainly driven by the long-reigning contradicting situation in the dark matter sector: the positive evidence for the detection of a dark matter modulation signal claimed by the DAMA/LIBRA collaboration is (under so-called standard assumptions) inconsistent with the null-results reported by most of the other direct dark matter experiments. We present the results of a first prototype detector using a new experimental approach in comparison to textit{conventional} single-channel NaI scintillation light detectors: a NaI crystal operated as a scintillating calorimeter at milli-Kelvin temperatures simultaneously providing a phonon (heat) plus scintillation light signal and particle discrimination on an event-by-event basis. We evaluate energy resolution, energy threshold and further performance parameters of this prototype detector developed within the COSINUS R&D project.
139 - T.Bretz , H. Anderhub , M. Backes 2013
The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the HEGRA CT3 telescope, still located at the Observatorio del Roque de los Muchachos, and it is successfully in operation since Oct. 2011. The use of Silicon devices promises a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. The FACT collaboration is investigating with which precision these devices can be operated on the long-term. Currently, the telescope is successfully operated from remote and robotic operation is under development. During the past months of operation, the foreseen monitoring program of the brightest known TeV blazars has been carried out, and first physics results have been obtained including a strong flare of Mrk501. An instantaneous flare alert system is already in a testing phase. This presentation will give an overview of the project and summarize its goals, status and first results.
The AGILE scientific instrument has been calibrated with a tagged $gamma$-ray beam at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali di Frascati (LNF). The goal of the calibration was the measure of the Point Spread Function (PSF) as a function of the photon energy and incident angle and the validation of the Monte Carlo (MC) simulation of the silicon tracker operation. The calibration setup is described and some preliminary results are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا