Do you want to publish a course? Click here

Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

82   0   0.0 ( 0 )
 Added by Luca Del Zanna
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ~10^46 erg are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ~10^15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3-D MHD simulations of relativistic pulsar winds and their associated nebulae.



rate research

Read More

56 - N. Bucciantini 2006
We solve for the time-dependent dynamics of axisymmetric, general relativistic magnetohydrodynamic winds from rotating neutron stars. The mass loss rate is obtained self-consistently as a solution to the MHD equations, subject to a finite thermal pressure at the stellar surface. We consider both monopole and dipole magnetic field geometries and we explore the parameter regime extending from low magnetization (low-sigma_o), almost thermally-driven winds to high magnetization (high-sigma_o), relativistic Poynting-flux dominated outflows. We compute the angular momentum and rotational energy loss rates as a function of sigma_o and compare with analytic expectations from the classical theory of pulsars and magnetized stellar winds. In the case of the monopole, our high-sigma_o calculations asymptotically approach the analytic force-free limit. If we define the spindown rate in terms of the open magnetic flux, we similarly reproduce the spindown rate from recent force-free calculations of the aligned dipole. However, even for sigma_o as high as ~20, we find that the location of the Y-type point (r_Y), which specifies the radius of the last closed field line in the equatorial plane, is not the radius of the light cylinder R_L = c/omega (R = cylindrical radius), as has previously been assumed in most estimates and force-free calculations. Instead, although the Alfven radius at intermediate latitudes quickly approaches R_L as sigma_o exceeds unity, r_Y remains significantly less than R_L. Because r_Y < R_L, our calculated spindown rates thus exceed the classic ``vacuum dipole rate. We discussthe implications of our results for models of rotation-powered pulsars and magnetars, both in their observed states and in their hypothesized rapidly rotating initial state.
68 - N. Bucciantini 2020
Pulsars out of their parent SNR directly interact with the ISM producing so called Bow-Shock Pulsar Wind Nebulae, the relativistic equivalents of the heliosphere/heliotail system. These have been directly observed from Radio to X-ray, and are found also associated to TeV halos, with a large variety of morphologies. They offer a unique environment where the pulsar wind can be studied by modelling its interaction with the surrounding ambient medium, in a fashion that is different/complementary from the canonical Plerions. These systems have also been suggested as the possible origin of the positron excess detected by AMS and PAMELA, in contrast to dark matter. I will present results from 3D Relativistic MHD simulations of such nebulae. On top of these simulations we computed the expected emission signatures, the properties of high energy particle escape, the role of current sheets in channeling cosmic rays, the level of turbulence and magnetic amplification, and how they depend on the wind structure and magnetisation.
169 - N. Bucciantini 2010
Pulsar Wind Nebulae (PWNe) are bubbles or relativistic plasma that form when the pulsar wind is confined by the SNR or the ISM. Recent observations have shown a richness of emission features that has driven a renewed interest in the theoretical modeling of these objects. In recent years a MHD paradigm has been developed, capable of reproducing almost all of the observed properties of PWNe, shedding new light on many old issues. Given that PWNe are perhaps the nearest systems where processes related to relativistic dynamics can be investigated with high accuracy, a reliable model of their behavior is paramount for a correct understanding of high energy astrophysics in general. I will review the present status of MHD models: what are the key ingredients, their successes, and open questions that still need further investigation.
We study the magnetosphere of a slowly rotating magnetized neutron star subject to toroidal oscillations in the relativistic regime. Under the assumption of a zero inclination angle between the magnetic moment and the angular momentum of the star, we analyze the Goldreich-Julian charge density and derive a second-order differential equation for the electrostatic potential. The analytical solution of this equation in the polar cap region of the magnetosphere shows the modification induced by stellar toroidal oscillations on the accelerating electric field and on the charge density. We also find that, after decomposing the oscillation velocity in terms of spherical harmonics, the first few modes with $m=0,1$ are responsible for energy losses that are almost linearly dependent on the amplitude of the oscillation and that, for the mode $(l,m)=(2,1)$, can be a factor $sim8$ larger than the rotational energy losses, even for a velocity oscillation amplitude at the star surface as small as $eta=0.05 Omega R$. The results obtained in this paper clarify the extent to which stellar oscillations are reflected in the time variation of the physical properties at the surface of the rotating neutron star, mainly by showing the existence of a relation between $Pdot{P}$ and the oscillation amplitude. Finally, we propose a qualitative model for the explanation of the phenomenology of intermittent pulsars in terms of stellar oscillations that are periodically excited by star glitches.
We make a perturbative calculation of neutrino scattering and absorption in hot and dense hyperonic neutron-star matter in the presence of a strong magnetic Field. We calculate that the absorption cross-sections in a fully relativistic mean-field theory. We find that there is a remarkable angular dependence, i.e. the neutrino absorption strength is reduced in a direction parallel to the magnetic Field and enhanced in the opposite direction. This asymmetry in the neutrino absorption is estimated to be as much as 2.2 % of the entire neutrino momentum for an interior magnetic Field of 2 x 10^{17} G. The pulsar kick velocities associated with this asymmetry are shown to be comparable to observed velocities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا