Do you want to publish a course? Click here

Shear-stress fluctuations and relaxation in polymer glasses

196   0   0.0 ( 0 )
 Added by J. Wittmer P.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time $Delta t$. The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time-averaged for each shear plane) to the stress-fluctuation relation $mu_{sf}$ for the shear modulus and the shear-stress relaxation modulus $G(t)$. Using 100 independent configurations we pay attention to the respective standard deviations. While the ensemble-averaged modulus $mu_{sf}(T)$ decreases continuously with increasing T for all $Delta t$ sampled, its standard deviation $delta mu_{sf}(T)$ is non-monotonous with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump-singularity at the glass transition is thus ill-posed. Confirming the effective time-translational invariance of our systems, the $Delta t$-dependence of $mu_{sf}$ and related quantities can be understood using a weighted integral over $G(t)$. This implies that the shear viscosity $eta(T)$ may be readily obtained from the $1/Delta t$-decay of $mu_{sf}$ above the glass transition.



rate research

Read More

Using molecular dynamics simulation of a standard coarse-grained polymer glass model we investigate by means of the stress-fluctuation formalism the shear modulus $mu$ as a function of temperature $T$ and sampling time $Delta t$. While the ensemble-averaged modulus $mu(T)$ is found to decrease continuously for all $Delta t$ sampled, its standard deviation $delta mu(T)$ is non-monotonous with a striking peak at the glass transition. Confirming the effective time-translational invariance of our systems, $mu(Delta t)$ can be understood using a weighted integral over the shear-stress relaxation modulus $G(t)$. While the crossover of $mu(T)$ gets sharper with increasing $Delta t$, the peak of $delta mu(T)$ becomes more singular. % It is thus elusive to predict the modulus of a single configuration at the glass transition.
202 - Ji Xuan Hou 2010
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, $G(t)$, into the plateau regime for chains with $Z=40$ entanglements and into the terminal relaxation regime for $Z=10$. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter -free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.
We investigate the stress relaxation behavior on the application of step strains to aging aqueous suspensions of the synthetic clay Laponite. The stress exhibits a two-step decay, from which the slow relaxation modes are extracted as functions of the sample ages and applied step strain deformations. Interestingly, the slow time scales that we estimate show a dramatic enhancement with increasing strain amplitudes. We argue that the system ends up exploring the deeper sections of its energy landscape following the application of the step strain.
We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable fluidized state, which relaxes back to a metastable solid state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches as well as long-range correlations (e.g., large dynamic heterogeneity) developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.
95 - Qin Xu , Abhinendra Singh , 2019
We experimentally investigate the rheology and stress fluctuations of granules densely suspended in silicone oil. We find that both thickening strength and stress fluctuations significantly weaken with oil viscosity $eta_0$. Comparison of our rheological results to the Wyart-Cates model for describing different dynamic jamming states suggests a transition from frictional contacts to lubrication interactions as $eta_0$ increases. To clarify the contribution from viscous interactions to the rheology, we systematically measure stress fluctuations in various flow states. Reduction of stress fluctuations with $eta_0$ indicates that a strong lubrication layer greatly inhibits force correlations among particles. Measuring stress fluctuations in the strong shear thickening regime, we observe a crossover from asymmetric Gamma to symmetric Gaussian distributions and associated with it a decrease of lateral (radial) correlation length $xi$ with increasing shear rate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا