Do you want to publish a course? Click here

A Monotone Finite Volume Method for Time Fractional Fokker-Planck Equations

122   0   0.0 ( 0 )
 Added by Yingjun Jiang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We develop a monotone finite volume method for the time fractional Fokker-Planck equations and theoretically prove its unconditional stability. We show that the convergence rate of this method is order 1 in space and if the space grid becomes sufficiently fine, the convergence rate can be improved to order 2. Numerical results are given to support our theoretical findings. One characteristic of our method is that it has monotone property such that it keeps the nonnegativity of some physical variables such as density, concentration, etc.



rate research

Read More

We obtain exact results for fractional equations of Fokker-Planck type using evolution operator method. We employ exact forms of one-sided Levy stable distributions to generate a set of self-reproducing solutions. Explicit cases are reported and studied for various fractional order of derivatives, different initial conditions, and for differe
139 - Zhichao Fang 2021
In this paper, the time fractional reaction-diffusion equations with the Caputo fractional derivative are solved by using the classical $L1$-formula and the finite volume element (FVE) methods on triangular grids. The existence and uniqueness for the fully discrete FVE scheme are given. The stability result and optimal textit{a priori} error estimate in $L^2(Omega)$-norm are derived, but it is difficult to obtain the corresponding results in $H^1(Omega)$-norm, so another analysis technique is introduced and used to achieve our goal. Finally, two numerical examples in different spatial dimensions are given to verify the feasibility and effectiveness.
Error estimates are rigorously derived for a semi-discrete version of a conservative spectral method for approximating the space-homogeneous Fokker-Planck-Landau (FPL) equation associated to hard potentials. The analysis included shows that the semi-discrete problem has a unique solution with bounded moments. In addition, the derivatives of such a solution up to any order also remain bounded in $L^2$ spaces globally time, under certain conditions. These estimates, combined with control of the spectral projection, are enough to obtain error estimates to the analytical solution and convergence to equilibrium states. It should be noted that this is the first time that an error estimate has been produced for any numerical method which approximates FPL equations associated to any range of potentials.
We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.
Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations. As prototypes we study three variants of a generic time-fractional Fokker-Planck equation with constant force. Type A generates superdiffusion, type B subdiffusion and type C both super- and subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuation-dissipation relation whereas A and B do not. We calculate analytically the position PDFs for all three cases and explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional transient work fluctuation relation, type A and type B both yield deviations by featuring a coefficient that depends on time and by a nonlinear dependence on the work. We discuss possible applications of these types of dynamics and fluctuation relations to experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا