Do you want to publish a course? Click here

Elastic Wannier-Stark Ladders and Bloch Oscillations in 1D Granular Crystals

111   0   0.0 ( 0 )
 Added by Rajesh Chaunsali
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the numerical and experimental study of elastic Wannier-Stark Ladders and Bloch Oscillations in a tunable one-dimensional granular chain consisting of cylindrical particles. The Wannier-Stark Ladders are obtained by tuning the contact angles to introduce a gradient in the contact stiffness along the granular chain. These ladders manifest as resonant modes localized in the space. When excited at the corresponding resonant frequencies, we demonstrate the existence of time-resolved Bloch Oscillations. The direct velocity measurements using Laser Doppler Vibrometry agree well with the numerical simulation results. We also show the possibility of further tailoring these Bloch Oscillations by numerical simulations. Such tunable systems could be useful for applications involving the spatial localization of elastic energy.



rate research

Read More

The Bloch oscillation (BO) and Wannier-Stark localization (WSL) are fundamental concepts about metal-insulator transitions in condensed matter physics. These phenomena have also been observed in semiconductor superlattices and simulated in platforms such as photonic waveguide arrays and cold atoms. Here, we report experimental investigation of BOs and WSL simulated with a 5-qubit programmable superconducting processor, of which the effective Hamiltonian is an isotropic $XY$ spin chain. When applying a linear potential to the system by properly tuning all individual qubits, we observe that the propagation of a single spin on the chain is suppressed. It tends to oscillate near the neighborhood of their initial positions, which demonstrates the characteristics of BOs and WSL. We verify that the WSL length is inversely correlated to the potential gradient. Benefiting from the precise single-shot simultaneous readout of all qubits in our experiments, we can also investigate the thermal transport, which requires the joint measurement of more than one qubits. The experimental results show that, as an essential characteristic for BOs and WSL, the thermal transport is also blocked under a linear potential. Our experiment would be scalable to more superconducting qubits for simulating various of out-of-equilibrium problems in quantum many-body systems.
We present our experimental investigations on the subject of nonlinearity-modified Bloch-oscillations and of nonlinear Landau-Zener tunneling between two energy bands in a rubidium Bose Einstein condensate in an accelerated periodic potential. Nonlinearity introduces an asymmetry in Landau-Zener tunneling. We also present measurements of resonantly enhanced tunneling between the Wannier-Stark energy levels for Bose-Einstein condensates loaded into an optical lattice.
We report new oscillations of wavepackets in quantum walks subjected to electric fields, that decorate the usual Bloch-Zener oscillations of insulators. The number of turning points (or sub-oscillations) within one Bloch period of these oscillations is found to be governed by the winding of the quasienergy spectrum. Thus, this provides a new physical manifestation of a topological property of periodically driven systems that can be probed experimentally. Our model, based on an oriented scattering network, is readily implementable in photonic and cold atomic setups.
Emission of high-order harmonics from solids provides a new avenue in attosecond science. On one hand, it allows to investigate fundamental processes of the non-linear response of electrons driven by a strong laser pulse in a periodic crystal lattice. On the other hand, it opens new paths toward efficient attosecond pulse generation, novel imaging of electronic wave functions, and enhancement of high-order harmonic generation (HHG) intensity. A key feature of HHG in a solid (as compared to the well-understood phenomena of HHG in an atomic gas) is the delocalization of the process, whereby an electron ionized from one site in the periodic lattice may recombine with any other. Here, we develop an analytic model, based on the localized Wannier wave functions in the valence band and delocalized Bloch functions in the conduction band. This Wannier-Bloch approach assesses the contributions of individual lattice sites to the HHG process, and hence addresses precisely the question of localization of harmonic emission in solids. We apply this model to investigate HHG in a ZnO crystal for two different orientations, corresponding to wider and narrower valence and conduction bands, respectively. Interestingly, for narrower bands, the HHG process shows significant localization, similar to harmonic generation in atoms. For all cases, the delocalized contributions to HHG emission are highest near the band-gap energy. Our results pave the way to controlling localized contributions to HHG in a solid crystal, with hard to overestimate implications for the emerging area of atto-nanoscience.
177 - Andrea Sacchetti 2017
In this paper we consider stationary solutions to the nonlinear one-dimensional Schroedinger equation with a periodic potential and a Stark-type perturbation. In the limit of large periodic potential the Stark-Wannier ladders of the linear equation become a dense energy spectrum because a cascade of bifurcations of stationary solutions occurs when the ratio between the effective nonlinearity strength and the tilt of the external field increases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا