Temporal Variations of Telluric Water Vapor Absorption at Apache Point Observatory


Abstract in English

Time-variable absorption by water vapor in Earths atmosphere presents an important source of systematic error for a wide range of ground-based astronomical measurements, particularly at near-infrared wavelengths. We present results from the first study on the temporal and spatial variability of water vapor absorption at Apache Point Observatory (APO). We analyze $sim$400,000 high-resolution, near-infrared ($H$-band) spectra of hot stars collected as calibration data for the APO Galactic Evolution Explorer (APOGEE) survey. We fit for the optical depths of telluric water vapor absorption features in APOGEE spectra and convert these optical depths to Precipitable Water Vapor (PWV) using contemporaneous data from a GPS-based PWV monitoring station at APO. Based on simultaneous measurements obtained over a 3$^{circ}$ field of view, we estimate that our PWV measurement precision is $pm0.11$ mm. We explore the statistics of PWV variations over a range of timescales from less than an hour to days. We find that the amplitude of PWV variations within an hour is less than 1 mm for most (96.5%) APOGEE field visits. By considering APOGEE observations that are close in time but separated by large distances on the sky, we find that PWV is homogeneous across the sky at a given epoch, with 90% of measurements taken up to 70$^{circ}$ apart within 1.5 hr having $Delta,rm{PWV}<1.0$ mm. Our results can be used to help simulate the impact of water vapor absorption on upcoming surveys at continental observing sites like APO, and also to help plan for simultaneous water vapor metrology that may be carried out in support of upcoming photometric and spectroscopic surveys.

Download