Killing Two Birds with One Stone: Malicious Domain Detection with High Accuracy and Coverage


Abstract in English

Inference based techniques are one of the major approaches to analyze DNS data and detecting malicious domains. The key idea of inference techniques is to first define associations between domains based on features extracted from DNS data. Then, an inference algorithm is deployed to infer potential malicious domains based on their direct/indirect associations with known malicious ones. The way associations are defined is key to the effectiveness of an inference technique. It is desirable to be both accurate (i.e., avoid falsely associating domains with no meaningful connections) and with good coverage (i.e., identify all associations between domains with meaningful connections). Due to the limited scope of information provided by DNS data, it becomes a challenge to design an association scheme that achieves both high accuracy and good coverage. In this paper, we propose a new association scheme to identify domains controlled by the same entity. Our key idea is an in-depth analysis of active DNS data to accurately separate public IPs from dedicated ones, which enables us to build high-quality associations between domains. Our scheme identifies many meaningful connections between domains that are discarded by existing state-of-the-art approaches. Our experimental results show that the proposed association scheme not only significantly improves the domain coverage compared to existing approaches but also achieves better detection accuracy. Existing path-based inference algorithm is specifically designed for DNS data analysis. It is effective but computationally expensive. As a solution, we investigate the effectiveness of combining our association scheme with the generic belief propagation algorithm. Through comprehensive experiments, we show that this approach offers significant efficiency and scalability improvement with only minor negative impact of detection accuracy.

Download