Do you want to publish a course? Click here

Consecutive magnetic phase diagram of UCoGe-URhGe-UIrGe system

84   0   0.0 ( 0 )
 Added by Jiri Pospisil
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prepared single crystals in UCo1-xRhxGe and UIr1-xRhxGe systems to establish a complex dU-U-T (dU-U is the shortest interatomic uranium distance and T is temperature) magnetic phase diagram. This recognized a characteristic maximum in magnetic susceptibility at temperature Tmax along the b axis as an important parameter. Three magnetically ordered regions can be distinguished within this scope; first a ferromagnetic region with Curie temperature < Tmax, second a ferromagnetic region with Curie temperature = Tmax and finally an antiferromagnetic region existing on the UIrGe side with Neel temperature < Tmax.



rate research

Read More

We review our recent studies on ferromagnetic superconductors, UGe2, URhGe and UCoGe, where the spin-triplet state with the so-called equal spin pairing is realized. We focus on experimental results of URhGe and UCoGe in which the superconductivity occurs already at ambient pressure. The huge upper critical field Hc2 on UCoGe for the field along the hard magnetization axis (b-axis) is confirmed by the AC susceptibility measurements by the fine tuning of field angle. Contrary to the huge Hc2 along the hard-magnetization axis, Hc2 along the easy-magnetization axis (c-axis) is relatively small in value. However, the initial slope of Hc2, namely dHc2/dT (H -> 0) both in UCoGe and in URhGe indicates the large value, which can be explained by the magnetic domain effect detected in the magnetization measurements. The specific heat measurements using a high quality single crystal of UCoGe demonstrate the bulk superconductivity, which is extended under magnetic field for the field along c-axis.
The field-angular dependence of Co-NMR spin-lattice relaxation rate 1/T1 has been measured for a 10% Co-doped single crystal of URhGe. The experiment revealed that spin fluctuations in ferromagnetic (FM) state of URhGe are robust against magnetic field below about 4 T, applied along any direction in the bc crystal plane. This is in clear contrast with the sister compound UCoGe, in which FM spin fluctuations are rapidly suppressed by a tiny applied field along the c axis. We show that such a difference in the character of the spin fluctuations is reflected in their two distinct phase diagrams for the upper critical field Hc2, providing further support to the mechanism of superconductivity mediated by spin fluctuations in these materials.
149 - E. Hassinger , D. Aoki , G. Knebel 2009
UCoGe is one of the few compounds showing the coexistence of ferromagnetism and superconductivity at ambient pressure. With T_Curie = 3 K and T_SC = 0.6 K it is near a quantum phase transition; the pressure needed to suppress the magnetism is slightly higher than 1 GPa. We report simultaneous resistivity and ac-susceptibility measurements under pressure on a polycrystal with very large single-crystalline domains and a resistivity ratio of about 6. Both methods confirm the phase diagram established before by resistivity measurements on a polycrystal. The ferromagnetic phase is suppressed for P approximately 1.2 GPa. Astonishingly, the superconductivity persists at pressures up to at least 2.4 GPa. In other superconducting and ferromagnetic heavy fermion compounds like UGe2 and URhGe, the superconducting state is situated only inside the larger ferromagnetic region. Therefore, UCoGe seems to be the first example where superconductivity extends from the ferromagnetic to the paramagnetic region.
The discovery in 2000 that the ferromagnetic (FM) compound UGe2 (T_Curie = 52 K at ambient pressure) becomes superconducting under a pressure of P = 1.1 GPa until it enters the paramagnetic (PM) phase above Pc = 1.6 GPa was a surprise. Successive searches for new materials (URhGe and UCoGe) led to the discovery of the coexistence of superconductivity (SC) and ferromagnetism at ambient pressure. Furthermore in UCoGe, it was found that SC survives in the PM regime from P_c = 1.1 to 4 GPa. Focus has been on low-temperature experiments under extreme conditions of magnetic field (H), pressure, and uniaxial stress. In UGe2, strong interplay exists between Fermi surface (FS) reconstructions in the cascade of different FM and PM ground states and their magnetic fluctuations. Similar phenomena occur in URhGe and UCoGe but, at first glance, the SC seems to be driven by the FM fluctuations. In UCoGe, a longitudinal field scan leads to a drastic decrease in the FM fluctuations, while a transverse field scan leads to suppression of the Curie temperature, T_Curie; the consequence is a boost in FM fluctuations, leading to a reinforcement of SC. The singularity in URhGe is the weakness of the anisotropy between c- and b-axes; the most noteworthy feature is the detection of reentrant SC near H_R. All the experimental results give evidence that the SC in these three materials originates from the FM fluctuations, which are amplitude modes of magnetic excitations in the FM state. Spin-triplet pairing has been anticipated in the FM superconductors and was actually observed by Knight-shift measurements in the SC state of UCoGe. Their fascinating (p, T, H) phase diagrams are now well established. Discussion is presented on how different theoretical approaches can describe the various phenomena discovered by experimentalists.
Low-temperature, high-field (H[-110] <= 7.5 T), neutron diffraction experiments on single-crystal Ce0.70Pr0.30B6 are reported. Two successive incommensurate phases are found to exist in zero field. The appearance, for H >= 4.6 T at T = 2 K, of an antiferromagnetic structure, k{AF} = (1/2, 1/2, 1/2), most likely due to an underlying antiferroquadrupolar order, is discussed in connection with recent x-ray diffraction experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا