Statistical Angles on the Lattice QCD Signal-to-Noise Problem


Abstract in English

The theory of quantum chromodynamics (QCD) encodes the strong interactions that bind quarks and gluons into nucleons and that bind nucleons into nuclei. Predictive control of QCD would allow nuclear structure and reactions as well as properties of supernovae and neutron stars to be theoretically studied from first principles. Lattice QCD can represent generic QCD predictions in terms of well-defined path integrals, but the sign and signal-to-noise problems have obstructed lattice QCD calculations of large nuclei and nuclear matter in practice. This thesis presents a statistical study of lattice QCD correlation functions, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in baryon correlation functions is demonstrated to arise from a sign problem associated with Monte Carlo sampling of complex correlation functions. The phases of complex correlation functions are analyzed in the framework of circular statistics, and the time evolution of the phase is shown to resemble a heavy-tailed random walk on the unit circle. Building on these observations, a new technique called phase reweighting is investigated that involves calculations of phase differences over fixed-length time intervals. Phase reweighting allows results for hadronic observables to be extracted from large-time correlation functions with constant signal-to-noise ratios. The signal-to-noise problem re-emerges as the length of the phase-difference interval is increased. Applications of phase reweighting to meson, baryon, and two-baryon systems are discussed.

Download