Do you want to publish a course? Click here

Boxy Orbital Structures in Rotating Bar Models

91   0   0.0 ( 0 )
 Added by Ivanio Puerari Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate regular and chaotic two-dimensional (2D) and three-dimensional (3D) orbits of stars in models of a galactic potential consisting in a disk, a halo and a bar, to find the origin of boxy components, which are part of the bar or (almost) the bar itself. Our models originate in snapshots of an N-body simulation, which develops a strong bar. We consider three snapshots of the simulation and for the orbital study we treat each snapshot independently, as an autonomous Hamiltonian system. The calculated corotation-to-bar-length ratios indicate that in all three cases the bar rotates slowly, while the orientation of the orbits of the main family of periodic orbits changes along its characteristic. We characterize the orbits as regular, sticky, or chaotic after integrating them for a 10 Gyr period by using the GALI$_2$ index. Boxiness in the equatorial plane is associated either with quasi-periodic orbits in the outer parts of stability islands, or with sticky orbits around them, which can be found in a large range of energies. We indicate the location of such orbits in diagrams, which include the characteristic of the main family. They are always found about the transition region from order to chaos. By perturbing such orbits in the vertical direction we find a class of 3D non-periodic orbits, which have boxy projections both in their face-on and side-on views.



rate research

Read More

83 - Junichi Baba NAOJ 2021
Some of barred galaxies, including the Milky Way, host a boxy/peanut/X-shaped bulge (BPX-shaped bulge). Previous studiessuggested that the BPX-shaped bulge can either be developed by bar buckling or by vertical inner Lindblad resonance (vILR)heating without buckling. In this paper, we study the observable consequence of an BPX-shaped bulge built up quickly after barformation via vILR heating without buckling, using anN-body/hydrodynamics simulation of an isolated Milky Way-like galaxy.We found that the BPX-shaped bulge is dominated by stars born prior to bar formation. This is because the bar suppresses starformation, except for the nuclear stellar disc (NSD) region and its tips. The stars formed near the bar ends have higher Jacobienergy, and when these stars lose their angular momentum, their radial action increases to conserve Jacobi energy. This preventsthem from reaching the vILR to be heated to the BPX region. By contrast, the NSD forms after the bar formation. From thissimulation and general considerations, we expect that the age distributions of the NSD and BPX-shaped bulge formed withoutbar buckling do not overlap each other. Then, the transition age between these components betrays the formation time of the bar, and is testable in future observations of the Milky Way and extra-galactic barred galaxies
Fitting equilibrium dynamical models to observational data is an essential step in understanding the structure of the gaseous hot haloes that surround our own and other galaxies. However, the two main categories of models that are used in the literature are poorly suited for this task: (i) simple barotropic models are analytic and can therefore be adjusted to match the observations, but are clearly unrealistic because the rotational velocity $v_phi(R,z)$ does not depend on the distance $z$ from the galactic plane, while (ii) models obtained as a result of cosmological galaxy formation simulations are more realistic, but are impractical to fit to observations due to high computational cost. Here we bridge this gap by presenting a general method to construct axisymmetric baroclinic equilibrium models of rotating galactic coronae in arbitrary external potentials. We consider in particular a family of models whose equipressure surfaces in the $(R,z)$ plane are ellipses of varying axis ratio. These models are defined by two one-dimensional functions, the axial ratio of pressure $q_{rm axis}(z)$ and the value of the pressure $P_{rm axis}(z)$ along the galaxys symmetry axis. These models can have a rotation speed $v_phi(R,z)$ that realistically decreases as one moves away from the galactic plane, and can reproduce the angular momentum distribution found in cosmological simulations. The models are computationally cheap to construct and can thus be used in fitting algorithms. We provide a python code that given $q_{rm axis}(z)$, $P_{rm axis}(z)$ and $Phi(R,z)$ returns $rho(R,z)$, $T(R,z)$, $P(R,z)$, $v_phi(R,z)$. We show a few examples of these models using the Milky Way as a case study.
X-structures are often observed in galaxies hosting the so-called B/PS (boxy/peanuts) bulges and are visible from the edge-on view. They are the most notable features of B/PS bulges and appear as four rays protruding from the disk of the host galaxy and distinguishable against the B/PS bulge background. In some works their origin is thought to be connected with the so-called banana-shaped orbits with a vertical resonance 2:1. A star in such an orbit performs two oscillations in the vertical direction per one revolution in the bar frame. Several recent studies that analyzed ensembles of orbits arising in different $N$-body models do not confirm the dominance of the resonant 2:1 orbits in X-structures. In our work we analyze two $N$-body models and show how the X-structure in our models is gradually assembled from the center to the periphery from orbits with less than 2:1 frequency ratio. The most number of such orbits is enclosed in a farfalle-shape (Italian pasta) form and turns out to be non-periodic. We conclude that the X-structure is only the envelope of regions of high density caused by the crossing or folding of different types of orbits at their highest points, and does not have a backbone similar to that of the in-plane bar. Comparing the orbital structure of two different numerical models, we show that the dominance of one or another family of orbits with a certain ratio of the vertical oscillations frequency to the in-plane frequency depends on the parameters of the underlying galaxy and ultimately determines the morphology of the X-structure and the opening angle of its rays.
We present and validate a novel semi-analytical approach to study the effect of dynamical friction on the orbits of massive perturbers in rotating stellar discs. We find that dynamical friction efficiently circularises the orbit of co-rotating perturbers, while it constantly increases the eccentricity of counter-rotating ones until their angular momenta reverse, then once again promoting circularisation. Such drag toward circular corotation could shape the distribution of orientations of kinematically decoupled cores in disc galaxies, naturally leading to the observed larger fraction of co-rotating cores.
We present SAURON integral-field observations of a sample of 12 mid to high-inclination disk galaxies, to unveil hidden bars on the basis of their kinematics, i.e., the correlation between velocity and h3 profiles, and to establish their degree of cylindrical rotation. For the latter, we introduce a method to quantify cylindrical rotation that is robust against inner disk components. We confirm high-levels of cylindrical rotation in boxy/peanut bulges, but also observe this feature in a few galaxies with rounder bulges. We suggest that these are also barred galaxies with end-on orientations. Re-analysing published data for our own Galaxy using this new method, we determine that the Milky Way bulge is cylindrically rotating at the same level as the strongest barred galaxy in our sample. Finally, we use self-consistent three-dimensional N-body simulations of bar-unstable disks to study the dependence of cylindrical rotation on the bars orientation and host galaxy inclination.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا