Do you want to publish a course? Click here

Remote quantum entanglement between two micromechanical oscillators

216   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks. Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm and cold atomic vapours, individual atoms and ions, and defects in solid-state systems. Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres. The entangled quantum state is distributed by an optical field at a designed wavelength near 1550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.



rate research

Read More

We propose a protocol for entanglement swapping which involves tripartite systems. The generation of remote entanglement induced by the Bell measurement can be easily certified by additional local measurements. We illustrate the protocol in the case of continuous variable systems where the certification is effective for an appropriate class of three-mode Gaussian states. We then apply the protocol to optomechanical systems, showing how mechanical entanglement between two remote micromechanical resonators can be generated and certified via local optical measurements.
Recent studies show that hybrid quantum systems based on magnonics provide a new and promising platform for generating macroscopic quantum states involving a large number of spins. Here we show how to entangle two magnon modes in two massive yttrium-iron-garnet (YIG) spheres using cavity optomagnonics, where magnons couple to high-quality optical whispering gallery modes supported by the YIG sphere. The spheres can be as large as 1 mm in diameter and each sphere contains more than $10^{18}$ spins. The proposal is based on the asymmetry of the Stokes and anti-Stokes sidebands generated by the magnon-induced Brillouin light scattering in cavity optomagnonics. This allows one to utilize the Stokes and anti-Stokes scattering process, respectively, for generating and verifying the entanglement. Our work indicates that cavity optomagnonics could be a promising system for preparing macroscopic quantum states.
146 - N. Leung , Y. Lu , S. Chakram 2018
We propose and experimentally demonstrate a simple and efficient scheme for photonic communication between two remote superconducting modules. Each module consists of a random access quantum information processor with eight-qubit multimode memory and a single flux tunable transmon. The two processor chips are connected through a one-meter long coaxial cable that is coupled to a dedicated communication resonator on each chip. The two communication resonators hybridize with a mode of the cable to form a dark communication mode that is highly immune to decay in the coaxial cable. We modulate the transmon frequency via a parametric drive to generate sideband interactions between the transmon and the communication mode. We demonstrate bidirectional single-photon transfer with a success probability exceeding 60 %, and generate an entangled Bell pair with a fidelity of 79.3 $pm$ 0.3 %.
We investigate a general scheme for generating, either dynamically or in the steady state, continuous variable entanglement between two mechanical resonators with different frequencies. We employ an optomechanical system in which a single optical cavity mode driven by a suitably chosen two-tone field is coupled to the two resonators. Significantly large mechanical entanglement can be achieved, which is extremely robust with respect to temperature.
Sharing information coherently between nodes of a quantum network is at the foundation of distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers connected by classical and quantum channels. A direct quantum channel, which connects nodes deterministically, rather than probabilistically, is advantageous for fault-tolerant quantum computation because it reduces the threshold requirements and can achieve larger entanglement rates. Here, we implement deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits constitute a universal quantum node capable of sending, receiving, storing, and processing quantum information. Our implementation is based on an all-microwave cavity-assisted Raman process which entangles or transfers the qubit state of a transmon-type artificial atom to a time-symmetric itinerant single photon. We transfer qubit states at a rate of $50 , rm{kHz}$ using the emitted photons which are absorbed at the receiving node with a probability of $98.1 pm 0.1 %$ achieving a transfer process fidelity of $80.02 pm 0.07 %$. We also prepare on demand remote entanglement with a fidelity as high as $78.9 pm 0.1 %$. Our results are in excellent agreement with numerical simulations based on a master equation description of the system. This deterministic quantum protocol has the potential to be used as a backbone of surface code quantum error correction across different nodes of a cryogenic network to realize large-scale fault-tolerant quantum computation in the circuit quantum electrodynamic architecture.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا