Do you want to publish a course? Click here

Generative Adversarial Source Separation

75   0   0.0 ( 0 )
 Added by Cem Subakan
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Generative source separation methods such as non-negative matrix factorization (NMF) or auto-encoders, rely on the assumption of an output probability density. Generative Adversarial Networks (GANs) can learn data distributions without needing a parametric assumption on the output density. We show on a speech source separation experiment that, a multi-layer perceptron trained with a Wasserstein-GAN formulation outperforms NMF, auto-encoders trained with maximum likelihood, and variational auto-encoders in terms of source to distortion ratio.



rate research

Read More

This paper addresses the problem of domain adaptation for the task of music source separation. Using datasets from two different domains, we compare the performance of a deep learning-based harmonic-percussive source separation model under different training scenarios, including supervised joint training using data from both domains and pre-training in one domain with fine-tuning in another. We propose an adversarial unsupervised domain adaptation approach suitable for the case where no labelled data (ground-truth source signals) from a target domain is available. By leveraging unlabelled data (only mixtures) from this domain, experiments show that our framework can improve separation performance on the new domain without losing any considerable performance on the original domain. The paper also introduces the Tap & Fiddle dataset, a dataset containing recordings of Scandinavian fiddle tunes along with isolated tracks for foot-tapping and violin.
Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments.Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we compare two waveform domain architectures. We first adapt Conv-Tasnet, initially developed for speech source separation,to the task of music source separation. While Conv-Tasnet beats many existing spectrogram-domain methods, it suffersfrom significant artifacts, as shown by human evaluations. We propose instead Demucs, a novel waveform-to-waveform model,with a U-Net structure and bidirectional LSTM.Experiments on the MusDB dataset show that, with proper data augmentation, Demucs beats allexisting state-of-the-art architectures, including Conv-Tasnet, with 6.3 SDR on average, (and up to 6.8 with 150 extra training songs, even surpassing the IRM oracle for the bass source).Using recent development in model quantization, Demucs can be compressed down to 120MBwithout any loss of accuracy.We also provide human evaluations, showing that Demucs benefit from a large advantagein terms of the naturalness of the audio. However, it suffers from some bleeding,especially between the vocals and other source.
The speech enhancement task usually consists of removing additive noise or reverberation that partially mask spoken utterances, affecting their intelligibility. However, little attention is drawn to other, perhaps more aggressive signal distortions like clipping, chunk elimination, or frequency-band removal. Such distortions can have a large impact not only on intelligibility, but also on naturalness or even speaker identity, and require of careful signal reconstruction. In this work, we give full consideration to this generalized speech enhancement task, and show it can be tackled with a time-domain generative adversarial network (GAN). In particular, we extend a previous GAN-based speech enhancement system to deal with mixtures of four types of aggressive distortions. Firstly, we propose the addition of an adversarial acoustic regression loss that promotes a richer feature extraction at the discriminator. Secondly, we also make use of a two-step adversarial training schedule, acting as a warm up-and-fine-tune sequence. Both objective and subjective evaluations show that these two additions bring improved speech reconstructions that better match the original speaker identity and naturalness.
A method for statistical parametric speech synthesis incorporating generative adversarial networks (GANs) is proposed. Although powerful deep neural networks (DNNs) techniques can be applied to artificially synthesize speech waveform, the synthetic speech quality is low compared with that of natural speech. One of the issues causing the quality degradation is an over-smoothing effect often observed in the generated speech parameters. A GAN introduced in this paper consists of two neural networks: a discriminator to distinguish natural and generated samples, and a generator to deceive the discriminator. In the proposed framework incorporating the GANs, the discriminator is trained to distinguish natural and generated speech parameters, while the acoustic models are trained to minimize the weighted sum of the conventional minimum generation loss and an adversarial loss for deceiving the discriminator. Since the objective of the GANs is to minimize the divergence (i.e., distribution difference) between the natural and generated speech parameters, the proposed method effectively alleviates the over-smoothing effect on the generated speech parameters. We evaluated the effectiveness for text-to-speech and voice conversion, and found that the proposed method can generate more natural spectral parameters and $F_0$ than conventional minimum generation error training algorithm regardless its hyper-parameter settings. Furthermore, we investigated the effect of the divergence of various GANs, and found that a Wasserstein GAN minimizing the Earth-Movers distance works the best in terms of improving synthetic speech quality.
Speech enhancement aims to obtain speech signals with high intelligibility and quality from noisy speech. Recent work has demonstrated the excellent performance of time-domain deep learning methods, such as Conv-TasNet. However, these methods can be degraded by the arbitrary scales of the waveform induced by the scale-invariant signal-to-noise ratio (SI-SNR) loss. This paper proposes a new framework called Time-domain Speech Enhancement Generative Adversarial Network (TSEGAN), which is an extension of the generative adversarial network (GAN) in time-domain with metric evaluation to mitigate the scaling problem, and provide model training stability, thus achieving performance improvement. In addition, we provide a new method based on objective function mapping for the theoretical analysis of the performance of Metric GAN, and explain why it is better than the Wasserstein GAN. Experiments conducted demonstrate the effectiveness of our proposed method, and illustrate the advantage of Metric GAN.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا