To identify the galaxies responsible for the reionization of the Universe, we must rely on the investigation of the Lyman Continuum (LyC) properties of z<5 star-forming galaxies, where we can still directly observe their ionizing radiation. We selected a sample of 201 star-forming galaxies from the Vimos Ultra Deep Survey at 3.5<z<4.3 to explore the validity of some of the proposed indirect indicators of LyC radiation. We created subsamples of galaxies with EWLya>70{AA}, Lya(ext)<5.7kpc, rUV<0.3kpc and |Dv Lya|<200km/s, stacked all the galaxies in each subsample and measured the flux density ratio fnu(895)/fnu(1470), that we consider to be a proxy for LyC emission. We compared these ratios to those obtained for the complementary samples. We find that the stacks of galaxies which are UV compact (rUV<0.3kpc) and have bright Lya emission (EWLya>70{AA}), have much higher LyC fluxes compared to the rest of the galaxy population in agreement with theoretical studies and previous observational works. We also find that galaxies with low Lya(ext) have the highest LyC flux: this new correlation seems even stronger than the correlations with high EWLya and small rUV. These results assume that the stacks from all the subsamples present the same statistical contamination from lower redshift interlopers. If we subtract a statistical contamination from low redshift interlopers obtained with dedicated Monte Carlo simulations, from the flux density ratios (fnu(895)/fnu(1470)) of the significant subsamples we find that these samples contain real LyC leaking flux with a very high probability, but the true average escape fractions remain uncertain. Our work indicates that galaxies with very high EWLya, small Lya(ext) and small rUV are very likely the best candidates to show LyC radiation at z=4 and could therefore be the galaxies that contributed more to reionization.