Do you want to publish a course? Click here

A data acquisition system based on ROOT and waveform digital technology for Photo-Neutron Source

112   0   0.0 ( 0 )
 Added by Longxiang Liu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The data acquisition system is based on ROOT and waveform digital technology, including neutron detector, waveform digitizer, PCI card, optical fiber, computer, reaction target device, stepper motor, data acquisition software and control target software. It achieves to acquire and record the waveform information of signal measured by the detector using a waveform digitizer. The specific target position is changed by the stepper motor which is remotely controlled by the data acquisition software and control target software. It is implemented by the exchange of information between the data acquisition software and the control target software. The system realizes to automatically open files and change targets at fixed intervals. It is capable of data compression by removing the data those are not signals, and automatic alarm when the beam is lost.



rate research

Read More

199 - L. Iafolla , A. Balla , M. Beretta 2012
In order to reconstruct gamma-gamma physics events tagged with High Energy Tagger (HET) in the KLOE-2 (K LOng Experiment 2), we need to measure the Time Of Flight (TOF) of the electrons and positrons from the KLOE-2 Interaction Point (IP) to our tagging stations (11 m apart). The required resolution must be better than the bunch spacing (2.7 ns). We have developed and implemented on a Xilinx Virtex-5 FPGA a Time to Digital Converter (TDC) with 625 ps resolution (LSB) along with an embedded data acquisition system and the interface to the online FARM of KLOE-2. We will describe briefly the architecture of the TDC and of the Data AcQuisition (DAQ) system. Some more details will be provided about the zero-suppression algorithm used to reduce the data throughput.
64 - Y.Igarashi , H.Fujii , T.Higuchi 2003
High energy physics experiments in KEK/Japan rush into over KHz trigger stage. Thus, we need a successor of the data acquisition(DAQ) system that replaces the CAMAC or FASTBUS systems. To meet these needs, we have developed a DAQ system which includes a crate, base-board modules, daughter cards for front-end A/D or T/D conversion, and back-end communication cards for data transfer and timing control. The size of the crate is for the 9U Euro-cards with the standard VME32 bus and extension connectors for power supply. The base-board comprises of a local bus with the sequencer connected to the front-end daughter cards via event buffering FIFOs, and the standard PMC (PCI mezzanine card) bus to be set a PMC processor unit to reduce data size from the front-end daughter cards. A data transfer module, which is connected to the event building system, and a trigger control unit, which communicates with the central timing controller are installed on the back-end communication card connected to the rear end of the base-board. We describe the design of this DAQ system and evaluate the performance of it.
MINER$ u$A (Main INjector ExpeRiment $ u$-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINER$ u$A employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINER$ u$A data acquisition system (DAQ) including the read-out electronics, software, and computing architecture.
The Advanced LIGO detectors are sophisticated opto-mechanical devices. At the core of their operation is feedback control. The Advanced LIGO project developed a custom digital control and data acquisition system to handle the unique needs of this new breed of astronomical detector. The advligorts is the software component of this system. This highly modular and extensible system has enabled the unprecedented performance of the LIGO instruments, and has been a vital component in the direct detection of gravitational waves.
The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector is filled with 17 tons of gadolinium(Gd)-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and an optically separated outer veto volumes. A total of 120 10-inch photomultiplier tubes observe the scintillating optical photons and each analog waveform is stored with the flash analog-to-digital converters. We present details of the data acquisition, processing, and data quality monitoring system. We also present two different trigger logics which are developed for the beam and self-trigger.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا