Do you want to publish a course? Click here

Pairwise Ising model analysis of human cortical neuron recordings

142   0   0.0 ( 0 )
 Publication date 2017
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

During wakefulness and deep sleep brain states, cortical neural networks show a different behavior, with the second characterized by transients of high network activity. To investigate their impact on neuronal behavior, we apply a pairwise Ising model analysis by inferring the maximum entropy model that reproduces single and pairwise moments of the neurons spiking activity. In this work we first review the inference algorithm introduced in Ferrari,Phys. Rev. E (2016). We then succeed in applying the algorithm to infer the model from a large ensemble of neurons recorded by multi-electrode array in human temporal cortex. We compare the Ising model performance in capturing the statistical properties of the network activity during wakefulness and deep sleep. For the latter, the pairwise model misses relevant transients of high network activity, suggesting that additional constraints are necessary to accurately model the data.



rate research

Read More

In this study, we analyzed the activity of monkey V1 neurons responding to grating stimuli of different orientations using inference methods for a time-dependent Ising model. The method provides optimal estimation of time-dependent neural interactions with credible intervals according to the sequential Bayes estimation algorithm. Furthermore, it allows us to trace dynamics of macroscopic network properties such as entropy, sparseness, and fluctuation. Here we report that, in all examined stimulus conditions, pairwise interactions contribute to increasing sparseness and fluctuation. We then demonstrate that the orientation of the grating stimulus is in part encoded in the pairwise interactions of the neural populations. These results demonstrate the utility of the state-space Ising model in assessing contributions of neural interactions during stimulus processing.
Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.
A major goal in neuroscience is to understand how populations of neurons code for stimuli or actions. While the number of neurons that can be recorded simultaneously is increasing at a fast pace, in most cases these recordings cannot access a complete population. In particular, it is hard to simultaneously record all the neurons of the same type in a given area. Recent progress have made possible to profile each recorded neuron in a given area thanks to genetic and physiological tools, and to pool together recordings from neurons of the same type across different experimental sessions. However, it is unclear how to infer the activity of a full population of neurons of the same type from these sequential recordings. Neural networks exhibit collective behaviour, e.g. noise correlations and synchronous activity, that are not directly captured by a conditionally-independent model that would just put together the spike trains from sequential recordings. Here we show that we can infer the activity of a full population of retina ganglion cells from sequential recordings, using a novel method based on copula distributions and maximum entropy modeling. From just the spiking response of each ganglion cell to a repeated stimulus, and a few pairwise recordings, we could predict the noise correlations using copulas, and then the full activity of a large population of ganglion cells of the same type using maximum entropy modeling. Remarkably, we could generalize to predict the population responses to different stimuli and even to different experiments. We could therefore use our method to construct a very large population merging cells responses from different experiments. We predicted synchronous activity accurately and showed it grew substantially with the number of neurons. This approach is a promising way to infer population activity from sequential recordings in sensory areas.
We show that a model of the hippocampus introduced recently by Scarpetta, Zhaoping & Hertz ([2002] Neural Computation 14(10):2371-96), explains the theta phase precession phenomena. In our model, the theta phase precession comes out as a consequence of the associative-memory-like network dynamics, i.e. the networks ability to imprint and recall oscillatory patterns, coded both by phases and amplitudes of oscillation. The learning rule used to imprint the oscillatory states is a natural generalization of that used for static patterns in the Hopfield model, and is based on the spike time dependent synaptic plasticity (STDP), experimentally observed. In agreement with experimental findings, the place cells activity appears at consistently earlier phases of subsequent cycles of the ongoing theta rhythm during a pass through the place field, while the oscillation amplitude of the place cells firing rate increases as the animal approaches the center of the place field and decreases as the animal leaves the center. The total phase precession of the place cell is lower than 360 degrees, in agreement with experiments. As the animal enters a receptive field the place cells activity comes slightly less than 180 degrees after the phase of maximal pyramidal cell population activity, in agreement with the findings of Skaggs et al (1996). Our model predicts that the theta phase is much better correlated with location than with time spent in the receptive field. Finally, in agreement with the recent experimental findings of Zugaro et al (2005), our model predicts that theta phase precession persists after transient intra-hippocampal perturbation.
Maximum Entropy models can be inferred from large data-sets to uncover how collective dynamics emerge from local interactions. Here, such models are employed to investigate neurons recorded by multielectrode arrays in the human and monkey cortex. Taking advantage of the separation of excitatory and inhibitory neuron types, we construct a model including this distinction. This approach allows to shed light upon differences between excitatory and inhibitory activity across different brain states such as wakefulness and deep sleep, in agreement with previous findings. Additionally, Maximum Entropy models can also unveil novel features of neuronal interactions, which are found to be dominated by pairwise interactions during wakefulness, but are population-wide during deep sleep. In particular, inhibitory neurons are observed to be strongly tuned to the inhibitory population. Overall, we demonstrate Maximum Entropy models can be useful to analyze data-sets with classified neuron types, and to reveal the respective roles of excitatory and inhibitory neurons in organizing coherent dynamics in the cerebral cortex.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا