No Arabic abstract
We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring which is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo-Gillespie-Hovey. It is also compatible with the notion of $n$-coherent rings introduced by Bravo-Perez: So a $0$-coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$-coherent AC-Gorenstein ring is precisely a Ding-Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects the Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects the Gorenstein AC-injectives.
In this paper, we first introduce $mathcal {W}_F$-Gorenstein modules to establish the following Foxby equivalence: $xymatrix@C=80pt{mathcal {G}(mathcal {F})cap mathcal {A}_C(R) ar@<0.5ex>[r]^{Cotimes_R-} & mathcal {G}(mathcal {W}_F) ar@<0.5ex>[l]^{textrm{Hom}_R(C,-)}} $ where $mathcal {G}(mathcal {F})$, $mathcal {A}_C(R) $ and $mathcal {G}(mathcal {W}_F)$ denote the class of Gorenstein flat modules, the Auslander class and the class of $mathcal {W}_F$-Gorenstein modules respectively. Then, we investigate two-degree $mathcal {W}_F$-Gorenstein modules. An $R$-module $M$ is said to be two-degree $mathcal {W}_F$-Gorenstein if there exists an exact sequence $mathbb{G}_bullet=indent ...longrightarrow G_1longrightarrow G_0longrightarrow G^0longrightarrow G^1longrightarrow...$ in $mathcal {G}(mathcal {W}_F)$ such that $M cong$ $im(G_0rightarrow G^0) $ and that $mathbb{G}_bullet$ is Hom$_R(mathcal {G}(mathcal {W}_F),-)$ and $mathcal {G}(mathcal {W}_F)^+otimes_R-$ exact. We show that two notions of the two-degree $mathcal {W}_F$-Gorenstein and the $mathcal {W}_F$-Gorenstein modules coincide when R is a commutative GF-closed ring.
Let $R$ be any ring with identity and Ch($R$) the category of chain complexes of (left) $R$-modules. We show that the Gorenstein AC-projective chain complexes are the cofibrant objects of an abelian model structure on Ch($R$). The model structure is cofibrantly generated and is projective in the sense that the trivially cofibrant objects are the categorically projective chain complexes. We show that when $R$ is a Ding-Chen ring, that is, a two-sided coherent ring with finite self FP-injective dimension, then the model structure is finitely generated, and so its homotopy category is compactly generated. Constructing this model structure also shows that every chain complex over any ring has a Gorenstein AC-projective precover. These are precisely Gorenstein projective (in the usual sense) precovers whenever $R$ is either a Ding-Chen ring, or, a ring for which all level (left) $R$-modules have finite projective dimension. For a general (right) coherent ring $R$, the Gorenstein AC-projective complexes coincide with the Ding projective complexes and so provide such precovers in this case.
Let $R$ be a commutative ring. We show that any complete duality pair gives rise to a theory of relative homological algebra, analogous to Gorenstein homological algebra. Indeed Gorenstein homological algebra over a commutative Noetherian ring of finite Krull dimension can be recovered from the duality pair $(mathcal{F},mathcal{I})$ where $mathcal{F}$ is the class of flat $R$-modules and $mathcal{I}$ is the class of injective $R$-modules. For a general $R$, the AC-Gorenstein homological algebra of Bravo-Gillespie-Hovey is the one coming from the duality pair $(mathcal{L},mathcal{A})$ where $mathcal{L}$ is the class of level $R$-modules and $mathcal{A}$ is class of absolutely clean $R$-modules. Indeed we show here that the work of Bravo-Gillespie-Hovey can be extended to obtain similar abelian model structures on $R$-Mod from any a complete duality pair $(mathcal{L},mathcal{A})$. It applies in particular to the original duality pairs constructed by Holm-J{o} rgensen.
Let $H$ be a Hopf algebra, $A/B$ be an $H$-Galois extension. Let $D(A)$ and $D(B)$ be the derived categories of right $A$-modules and of right $B$-modules respectively. An object $M^cdotin D(A)$ may be regarded as an object in $D(B)$ via the restriction functor. We discuss the relations of the derived endomorphism rings $E_A(M^cdot)=op_{iinmathbb{Z}}Hom_{D(A)}(M^cdot,M^cdot[i])$ and $E_B(M^cdot)=op_{iinmathbb{Z}}Hom_{D(B)}(M^cdot,M^cdot[i])$. If $H$ is a finite dimensional semisimple Hopf algebra, then $E_A(M^cdot)$ is a graded subalgebra of $E_B(M^cdot)$. In particular, if $M$ is a usual $A$-module, a necessary and sufficient condition for $E_B(M)$ to be an $H^*$-Galois graded extension of $E_A(M)$ is obtained. As an application of the results, we show that the Koszul property is preserved under Hopf Galois graded extensions.
Let $T=left( begin{array}{cc} R & M 0 & S end{array} right) $ be a triangular matrix ring with $R$ and $S$ rings and $_RM_S$ an $R$-$S$-bimodule. We describe Gorenstein projective modules over $T$. In particular, we refine a result of Enochs, Cort{e}s-Izurdiaga and Torrecillas [Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra 218 (2014), no. 8, 1544-1554]. Also, we consider when the recollement of $mathbb{D}^b(T{text-} Mod)$ restricts to a recollement of its subcategory $mathbb{D}^b(T{text-} Mod)_{fgp}$ consisting of complexes with finite Gorenstein projective dimension. As applications, we obtain recollements of the stable category $underline{T{text-} GProj}$ and recollements of the Gorenstein defect category $mathbb{D}_{def}(T{text-} Mod)$.