Spectral asymptotics for Robin Laplacians on polygonal domains


Abstract in English

Let $Omega$ be a curvilinear polygon and $Q^gamma_{Omega}$ be the Laplacian in $L^2(Omega)$, $Q^gamma_{Omega}psi=-Delta psi$, with the Robin boundary condition $partial_ u psi=gamma psi$, where $partial_ u$ is the outer normal derivative and $gamma>0$. We are interested in the behavior of the eigenvalues of $Q^gamma_Omega$ as $gamma$ becomes large. We prove that the asymptotics of the first eigenvalues of $Q^gamma_Omega$ is determined at the leading order by those of model operators associated with the vertices: the Robin Laplacians acting on the tangent sectors associated with $partial Omega$. In the particular case of a polygon with straight edges the first eigenpairs are exponentially close to those of the model operators. Finally, we prove a Weyl asymptotics for the eigenvalue counting function of $Q^gamma_Omega$ for a threshold depending on $gamma$, and show that the leading term is the same as for smooth domains.

Download