Do you want to publish a course? Click here

On the Spatially Resolved Star-Formation History in M51 II: X-ray Binary Population Evolution

71   0   0.0 ( 0 )
 Added by Bret Lehmer
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star-formation event. We first utilize detailed stellar population synthesis modeling of far-UV to far-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star-formation histories (SFHs) on subgalactic (~400 pc) scales. Next, we use the ~850 ks cumulative Chandra exposure of M51 to identify and isolate 2-7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star-formation rate [SFR] per stellar mass [M*] and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age. Our best-fit model indicates the XRB XLF per unit stellar mass declines in normalization, by ~3-3.5 dex, and steepens in slope from ~10 Myr to ~10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how the XRB XLF evolves with age.



rate research

Read More

We present Lightning, a new spectral energy distribution (SED) fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. Lightning consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive FUV-to-FIR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the last 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover a SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51, and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars, and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.
266 - S. Mineo 2013
The colliding galaxy pair NGC 2207/IC 2163, at a distance of ~39 Mpc, was observed with Chandra, and an analysis reveals 28 well resolved X-ray sources, including 21 ultraluminous X-ray sources (ULXs) with Lx > 10^39 erg/s, as well as the nucleus of NGC 2207. The number of ULXs is comparable with the largest numbers of ULXs per unit mass in any galaxy yet reported. In this paper we report on these sources, and quantify how their locations correlate with the local star formation rates seen in spatially-resolved star formation rate density images that we have constructed using combinations of Galex FUV and Spitzer 24um images. We show that the numbers of ULXs are strongly correlated with the local star formation rate densities surrounding the sources, but that the luminosities of these sources are not strongly correlated with star formation rate density.
120 - Ji-hoon Kim 2012
We investigate the spatially-resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate. Because we have self-consistently calculated the location of ionized gas, we are able to make spatially-resolved mock observations of star formation tracers, such as H-alpha emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3e11 Msun, we find that the correlation between star formation rate density (estimated from mock H-alpha emission) and molecular hydrogen density shows large scatter, especially at high resolutions of <~ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution, and because H-alpha traces hot gas around star-forming regions and is displaced from the molecular hydrogen peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces, and molecular clouds being dispersed via stellar feedback.
We present deep Hubble Space Telescope Advanced Camera for Surveys observations of the stellar populations in two fields lying at 20 and 23 kpc from the centre of M31 along the south-west semi-major axis. These data enable the construction of colour-magnitude diagrams reaching the oldest main-sequence turn-offs (~13 Gyr) which, when combined with another field at 25 kpc from our previous work, we use to derive the first precision constraints on the spatially-resolved star formation history of the M31 disc. The star formation rates exhibit temporal as well as field-to-field variations, but are generally always within a factor of two of their time average. There is no evidence of inside-out growth over the radial range probed. We find a median age of ~7.5 Gyr, indicating that roughly half of the stellar mass in the M31 outer disc was formed before z ~ 1. We also find that the age-metallicity relations (AMRs) are smoothly increasing from [Fe/H]~-0.4 to solar metallicity between 10 and 3 Gyr ago, contrary to the flat AMR of the Milky Way disc at a similar number of scale lengths. Our findings provide insight on the roles of stellar feedback and radial migration in the formation and evolution of large disc galaxies.
We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity ($D=3.82pm 0.27$ Mpc) we reach stars 3 magnitudes fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history spans the whole Hubble time, but due to the age-metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e. $sim 3$ Gyr. The most recent peak of star formation is around 10 Myr ago. The average surface density star formation rate over the whole galaxy lifetime is $0.01$ M$_{odot}$ yr$^{-1}$ kpc$^{-2}$. From our study it emerges that NGC 4449 has experienced a fairly continuous star formation regime in the last 1 Gyr with peaks and dips whose star formation rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its star formation history does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا