Do you want to publish a course? Click here

Morpho-kinematic properties of field S0 bulges in the CALIFA survey

91   0   0.0 ( 0 )
 Added by Jairo Mendez-Abreu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a sample of 28 S0 galaxies extracted from the integral-field spectroscopic (IFS) survey CALIFA. We combine an accurate two-dimensional (2D) multi-component photometric decomposition with the IFS kinematic properties of their bulges to understand their formation scenario. Our final sample is representative of S0s with high stellar masses ($M_{star}/M_{sun} > 10^{10}$). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements ($lambda$ and $v/sigma$). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge reprojected values of $lambda$ and $v/sigma$. We find that the photometric ($n$ and $B/T$) and kinematic ($v/sigma$ and $lambda$) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like vs classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipation processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.



rate research

Read More

This series of papers aims at understanding the formation and evolution of non-barred disc galaxies. We use the new spectro-photometric decomposition code, C2D, to separate the spectral information of bulges and discs of a statistically representative sample of galaxies from the CALIFA survey. Then, we study their stellar population properties analising the structure-independent datacubes with the Pipe3D algorithm. We find a correlation between the bulge-to-total ($B/T$) luminosity (and mass) ratio and galaxy stellar mass. The $B/T$ mass ratio has only a mild evolution with redshift, but the bulge-to-disc ($B/D$) mass ratio shows a clear increase of the disc component since redshift $z < 1$ for massive galaxies. The mass-size relation for both bulges and discs describes an upturn at high galaxy stellar masses (log{(M_{star}/M_{sun})} > 10.5). The relation holds for bulges but not for discs when using their individual stellar masses. We find a negligible evolution of the mass-size relation for both the most massive (log{(M_{star rm ,b,d}/M_{sun})} > 10) bulges and discs. For lower masses, discs show a larger variation than bulges. We also find a correlation between the Sersic index of bulges and both galaxy and bulge stellar mass, which does not hold for the disc mass. Our results support an inside-out formation of nearby non-barred galaxies, and they suggest that i) bulges formed early-on and ii) they have not evolved much through cosmic time. However, we find that the early properties of bulges drive the future evolution of the galaxy as a whole, and particularly the properties of the discs that eventually form around them.
80 - A. Danehkar 2021
The majority of planetary nebulae (PNe) show axisymmetric morphologies, whose causes are not well understood. In this work, we present spatially resolved kinematic observations of 14 Galactic PNe surrounding Wolf-Rayet ([WR]) and weak emission-line stars ($wels$) based on the H$alpha$ and [N II] emission taken with the Wide Field Spectrograph on the ANU 2.3-m telescope. Velocity-resolved channel maps and position--velocity diagrams, together with archival Hubble Space Telescope ($HST$) and ground-based images, are employed to construct three-dimensional morpho-kinematic models of 12 objects using the program SHAPE. Our results indicate that these 12 PNe have elliptical morphologies with either open or closed outer ends. Kinematic maps also illustrate on-sky orientations of elliptically symmetric morphologies of the interior shells in NGC 6578 and NGC 6629, and the compact ($leq 6$ arcsec) PNe Pe1-1, M3-15, M1-25, Hen2-142, and NGC 6567, in agreement with the high-resolution $HST$ images containing morphological details. Point-symmetric knots in Hb4 exhibit deceleration with distance from the nebular center that could be due to shock collisions with the ambient medium. Velocity dispersion maps of Pe1-1 disclose point-symmetric knots similar to those in Hb4. Collimated outflows are also visible in the position--velocity diagrams of M3-30, M1-32, M3-15, and K2-16, which are reconstructed by tenuous prolate ellipsoids extending upwardly from thick toroidal shells in our models.
148 - Peter Erwin 2014
We study nine S0-Sb galaxies with (photometric) bulges consisting of two distinct components. The outer component is a flattened, kinematically cool, disklike structure: a disky pseudobulge. Embedded inside is a rounder, kinematically hot spheroid: a classical bulge. This indicates that pseudobulges and classical bulges are not mutually exclusive: some galaxies have both. The disky pseudobulges almost always have an exponential disk (scale lengths = 125-870 pc, mean $sim 440$ pc) with disk-related subcomponents: nuclear rings, bars, and/or spiral arms. They constitute 11-59% of the galaxy stellar mass (mean PB/T = 0.33), with stellar masses $sim 7 times 10^{9}$-$9 times 10^{10} M_{odot}$. Classical-bulge components have Sersic indices of 0.9-2.2, effective radii of 25-430 pc and stellar masses of $5 times 10^{8}$-$3 times 10^{10} M_{odot}$ (usually < 10% of the galaxys stellar mass; mean B/T = 0.06). The classical bulges show rotation, but are kinematically hotter than the disky pseudobulges. Dynamical modeling of three systems indicates that velocity dispersions are isotropic in the classical bulges and equatorially biased in the disky pseudobulges. In the mass--radius and mass--stellar mass density planes, classical-bulge components follow sequences defined by ellipticals and (larger) classical bulges. Disky pseudobulges also fall on this sequence; they are more compact than similar-mass large-scale disks. Although some classical bulges are quite compact, they are distinct from nuclear star clusters in both size and mass, and coexist with nuclear clusters in at least two galaxies. Since almost all the galaxies in this study are barred, they probably also host boxy/peanut-shaped bulges (vertically thickened inner parts of bars). NGC 3368 shows evidence for such a zone outside its disky pseudobulge, making it a galaxy with all three types of bulge.
An $m=1$ lopsided asymmetry is common in disc galaxies. Here, we investigate the excitation of an $m=1$ lopsidedness in host galaxies during minor mergers (mass ratio 1:10) while choosing a set of minor merger models (with varying orbital configurations, morphology of the host galaxy) from the GalMer library of galaxy merger simulations. We show that a minor merger triggers a prominent $m=1$ lopsidedness in the stars of the host galaxy. The strength of the $m=1$ lopsidedness undergoes a transient amplification phase after each pericentre passage of the satellite, in concordance with past findings of excitation of an $m=1$ lopsidedness due to tidal encounters. However, once the merger happens, and the post-merger remnant readjusts itself, the lopsidedness fades away in short time-scale ($sim 500-850$ Myr). Furthermore, a delayed merger can drive a prolonged ($sim 2$ Gyr) lopsidedness in the host galaxy. We demonstrate that the $m=1$ lopsidedness rotates with a well-defined pattern speed. The measured pattern speed is much slower than the $m=2$ bar pattern speed, and is retrograde with respect to the bar. This gives rise to a dynamical scenario where the Inner Linblad resonance (ILR) of the $m=1$ lopsidedness falls in between the corotation (CR) and the Outer Linblad resonance (OLR) of the $m=2$ bar mode. A kinematic lopsidedness also arises in the host galaxy, and the resulting temporal variation closely follows that of the density lopsidedness. The minor merger also triggers a transient off-centred stellar disc-dark matter halo configuration due to the tidal encounter with the satellite.
We carry out a direct search for bar-like non-circular flows in intermediate-inclination, gas-rich disk galaxies with a range of morphological types and photometric bar classifications from the first data release (DR1) of the CALIFA survey. We use the DiskFit algorithm to apply rotation only and bisymmetric flow models to H$alpha$ velocity fields for 49/100 CALIFA DR1 systems that meet our selection criteria. We find satisfactory fits for a final sample of 37 systems. DiskFit is sensitive to the radial or tangential components of a bar-like flow with amplitudes greater than $15,$km$,$s$^{-1}$ across at least two independent radial bins in the fit, or ~2.25 kpc at the characteristic final sample distance of ~75 Mpc. The velocity fields of 25/37 $(67.6^{+6.6}_{-8.5}%)$ galaxies are best characterized by pure rotation, although only 17/25 $(68.0^{+7.7}_{-10.4}%)$ of them have sufficient H$alpha$ emission near the galaxy centre to afford a search for non-circular flows. We detect non-circular flows in the remaining 12/37 $(32.4^{+8.5}_{-6.6}%)$ galaxies. We conclude that the non-circular flows detected in 11/12 $(91.7^{+2.8}_{-14.9}%)$ systems stem from bars. Galaxies with intermediate (AB) bars are largely undetected, and our detection thresholds therefore represent upper limits to the amplitude of the non-circular flows therein. We find 2/23 $(8.7^{+9.6}_{-2.9}%)$ galaxies that show non-circular motions consistent with a bar-like flow, yet no photometric bar is evident. This suggests that in ~10% of galaxies either the existence of a bar may be missed completely in photometry or other processes may drive bar-like flows and thus secular galaxy evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا