Do you want to publish a course? Click here

Boundary Conformal Anomalies on Hyperbolic Spaces and Euclidean Balls

109   0   0.0 ( 0 )
 Added by Jorge Russo
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We compute conformal anomalies for conformal field theories with free conformal scalars and massless spin $1/2$ fields in hyperbolic space $mathbb{H}^d$ and in the ball $mathbb{B}^d$, for $2leq dleq 7$. These spaces are related by a conformal transformation. In even dimensional spaces, the conformal anomalies on $mathbb{H}^{2n}$ and $mathbb{B}^{2n}$ are shown to be identical. In odd dimensional spaces, the conformal anomaly on $mathbb{B}^{2n+1}$ comes from a boundary contribution, which exactly coincides with that of $mathbb{H}^{2n+1}$ provided one identifies the UV short-distance cutoff on $mathbb{B}^{2n+1}$ with the inverse large distance IR cutoff on $mathbb{H}^{2n+1}$, just as prescribed by the conformal map. As an application, we determine, for the first time, the conformal anomaly coefficients multiplying the Euler characteristic of the boundary for scalars and half-spin fields with various boundary conditions in $d=5$ and $d=7$.



rate research

Read More

We compute free energies as well as conformal anomalies associated with boundaries for a conformal free scalar field. To that matter, we introduce the family of spaces of the form $mathbb{S}^atimes mathbb{H}^b$, which are conformally related to $mathbb{S}^{a+b}$. For the case of $a=1$, related to the entanglement entropy across $mathbb{S}^{b-1}$, we provide some new explicit computations of entanglement entropies at weak coupling. We then compute the free energy for spaces $mathbb{S}^atimes mathbb{H}^b$ for different values of $a$ and $b$. For spaces $mathbb{S}^{2n+1}times mathbb{H}^{2k}$ we find an exact match with the free energy on $mathbb{S}^{2n+2k+1}$. For $mathbb{H}^{2k+1}$ and $mathbb{S}^{3}times mathbb{H}^{3}$ we find conformal anomalies originating from boundary terms. We also compute the free energy for strongly coupled theories through holography, obtaining similar results.
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kahler-Hodge and we further argue that it has vanishing Kahler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kahler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
The second named author and David Kalaj introduced a pseudometric on any domain in the real Euclidean space $mathbb R^n$, $nge 3$, defined in terms of conformal harmonic discs, by analogy with Kobayashis pseudometric on complex manifolds, which is defined in terms of holomorphic discs. They showed that on the unit ball of $mathbb R^n$, this minimal metric coincides with the classical Beltrami-Cayley-Klein metric. In the present paper we investigate properties of the minimal pseudometric and give sufficient conditions for a domain to be (complete) hyperbolic, meaning that the minimal pseudometric is a (complete) metric. We show in particular that a domain having a negative minimal plurisubharmonic exhaustion function is hyperbolic, and a bounded strongly minimally convex domain is complete hyperbolic. We also prove a localization theorem for the minimal pseudometric. Finally, we show that a convex domain is complete hyperbolic if and only if it does not contain any affine 2-plane.
173 - Jayanta Sarkar 2020
In this article, we extend a result of L. Loomis and W. Rudin, regarding boundary behavior of positive harmonic functions on the upper half space $R_+^{n+1}$. We show that similar results remain valid for more general approximate identities. We apply this result to prove a result regarding boundary behavior of nonnegative eigenfunctions of the Laplace-Beltrami operator on real hyperbolic space $mathbb H^n$. We shall also prove a generalization of a result regarding large time behavior of solution of the heat equation proved in cite{Re}. We use this result to prove a result regarding asymptotic behavior of certain eigenfunctions of the Laplace-Beltrami operator on real hyperbolic space $mathbb H^n$.
Hairy black holes in the gravitational decoupling setup are studied from the perspective of conformal anomalies. Fluctuations of decoupled sources can be computed by measuring the way the trace anomaly-to-holographic Weyl anomaly ratio differs from unit. Therefore the gravitational decoupling parameter governing three hairy black hole metrics is then bounded to a range wherein one can reliably emulate AdS/CFT with gravitational decoupled solutions, in the tensor vacuum regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا