No Arabic abstract
The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.
We describe the design of the Commissioning Instrument for the Dark Energy Spectroscopic Instrument (DESI). DESI will obtain spectra over a 3 degree field of view using the 4-meter Mayall Telescope at Kitt Peak, AZ. In order to achieve the required image quality over this field of view, a new optical corrector is being installed at the Mayall Telescope. The Commissioning Instrument is designed to characterize the image quality of the new optical system. The Commissioning Instrument has five commercial cameras; one at the center of the focal surface and four near the periphery of the field and at the cardinal directions. There are also 22 illuminated fiducials, distributed throughout the focal surface, that will be used to test the system that will map between the DESI fiber positioners and celestial coordinates. We describe how the commissioning instrument will perform commissioning tasks for the DESI project and thereby eliminate risks.
We present the status of the Dark Energy Spectroscopic Instrument (DESI) and its plans and opportunities for the coming decade. DESI construction and its initial five years of operations are an approved experiment of the US Department of Energy and is summarized here as context for the Astro2020 panel. Beyond 2025, DESI will require new funding to continue operations. We expect that DESI will remain one of the worlds best facilities for wide-field spectroscopy throughout the decade. More about the DESI instrument and survey can be found at https://www.desi.lbl.gov.
The characterisation of exoplanets is critical to understanding planet diversity and formation, their atmospheric composition and the potential for life. This endeavour is greatly enhanced when light from the planet can be spatially separated from that of the host star. One potential method is nulling interferometry, where the contaminating starlight is removed via destructive interference. The GLINT instrument is a photonic nulling interferometer with novel capabilities that has now been demonstrated in on-sky testing. The instrument fragments the telescope pupil into sub-apertures that are injected into waveguides within a single-mode photonic chip. Here, all requisite beam splitting, routing and recombination is performed using integrated photonic components. We describe the design, construction and laboratory testing of our GLINT pathfinder instrument. We then demonstrate the efficacy of this method on sky at the Subaru Telescope, achieving a null-depth precision on sky of $sim10^{-4}$ and successfully determining the angular diameter of stars (via their null-depth measurements) to milli-arcsecond accuracy. A statistical method for analysing such data is described, along with an outline of the next steps required to deploy this technique for cutting-edge science.
The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 square degrees will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We present an overview of the instrumentation, the main technical requirements and challenges, and the current status of the project.
The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We will describe the production and manufacturing processes developed for the 5000 fiber positioner robots mounted on the focal plane of the Mayall telescope.