No Arabic abstract
We perform a one-loop study of the small-$z_3^2$ behavior of the Ioffe-time distribution (ITD) ${cal M} ( u, z_3^2)$, the basic function that may be converted into parton pseudo- and quasi-distributions. We calculate the corrections at the operator level, so that our results may be later used for pseudo-distribution amplitudes and generalized parton pseudo-distributions. We separate two sources of the $z_3^2$-dependence at small $z_3^2$. One is related to the ultraviolet (UV) singularities generated by the gauge link, and another to short-distance logarithms generating perturbative evolution of parton densities. Our calculation explicitly shows that, for a finite UV cut-off, the UV-singular terms vanish when $z_3^2=0$. The UV divergences are absent in the ratio ${cal M} ( u, z_3^2)/{cal M} (0, z_3^2)$ (reduced ITD). Still, it has a non-trivial short-distance behavior due to $ln z_3^2 Lambda^2$ terms generating perturbative evolution of the parton densities. We give an explicit expression, up to constant terms, for the reduced ITD at one loop. It may be used in extraction of PDFs from the lattice QCD simulations. We also use our results to get new insights concerning the structure of parton quasi-distributions at one-loop level.
We present the results that are necessary in the ongoing lattice calculations of the gluon parton distribution functions (PDFs) within the pseudo-PDF approach. We identify the two-gluon correlator functions that contain the invariant amplitude determining the gluon PDF in the light-cone $z^2 to 0$ limit, and perform one-loop calculations in the coordinate representation in an explicitly gauge-invariant form. Ultraviolet (UV) terms, which contain $ln (-z^2)$-dependence cancel in the reduced Ioffe-time distribution (ITD), and we obtain the matching relation between the reduced ITD and the light-cone ITD. Using a kernel form, we get a direct connection between lattice data for the reduced ITD and the normalized gluon PDF.
We present the results that are necessary in the ongoing lattice calculations of the gluon parton distribution functions (PDFs) within the pseudo-PDF approach. We give a classification of possible two-gluon correlator functions and identify those that contain the invariant amplitude determining the gluon PDF in the light-cone $z^2 to 0$ limit. One-loop calculations have been performed in the coordinate representation and in an explicitly gauge-invariant form. We made an effort to separate ultraviolet (UV) and infrared (IR) sources of the $ln (-z^2)$-dependence at short distances $z^2$. The UV terms cancel in the reduced Ioffe-time distribution (ITD), and we obtain the matching relation between the reduced ITD and the light-cone ITD. Using a kernel form, we get a direct connection between lattice data for the reduced ITD and the normalized gluon PDF. We also show that our results may be used for a rather straightforward calculation of the one-loop matching relations for quasi-PDFs.
We derive one-loop matching relations for the Ioffe-time distributions related to the pion distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a universal expression for the one-loop correction in an operator form, and will be used in the ongoing lattice calculations of the pion DA and GPDs based on the parton pseudo-distributions approach.
We show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large $p_3 sim 3$ GeV momenta to get reasonably close to the PDF limit. As an alternative approach, we propose to use pseudo-PDFs $P(x, z_3^2)$ that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions $M ( u, z_3^2)$, the functions of the Ioffe time $ u = p_3 z_3$ and the distance parameter $z_3^2$ with respect to which it displays perturbative evolution for small $z_3$. In this form, one may divide out the $z_3^2$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The $ u$-dependence remains intact and determines the shape of PDFs.
By working out the kinematics of double parton scattering at short relative transverse distances, we obtain an explicit link between the transverse centres of mass, of the two hard partonic interactions, and the contributions to the process, due to pairs of interacting partons generated by perturbative splitting. One my thus foresee the interesting possibility of discriminating experimentally between contributions to the double parton scattering cross section, due to interacting parton pairs originated by independent evolution, and contributions, due to interacting parton pairs generated by splitting.