Do you want to publish a course? Click here

Greater data science at baccalaureate institutions

75   0   0.0 ( 0 )
 Added by Nicholas Horton
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Donohos JCGS (in press) paper is a spirited call to action for statisticians, who he points out are losing ground in the field of data science by refusing to accept that data science is its own domain. (Or, at least, a domain that is becoming distinctly defined.) He calls on writings by John Tukey, Bill Cleveland, and Leo Breiman, among others, to remind us that statisticians have been dealing with data science for years, and encourages acceptance of the direction of the field while also ensuring that statistics is tightly integrated. As faculty at baccalaureate institutions (where the growth of undergraduate statistics programs has been dramatic), we are keen to ensure statistics has a place in data science and data science education. In his paper, Donoho is primarily focused on graduate education. At our undergraduate institutions, we are considering many of the same questions.



rate research

Read More

The field of data science currently enjoys a broad definition that includes a wide array of activities which borrow from many other established fields of study. Having such a vague characterization of a field in the early stages might be natural, but over time maintaining such a broad definition becomes unwieldy and impedes progress. In particular, the teaching of data science is hampered by the seeming need to cover many different points of interest. Data scientists must ultimately identify the core of the field by determining what makes the field unique and what it means to develop new knowledge in data science. In this review we attempt to distill some core ideas from data science by focusing on the iterative process of data analysis and develop some generalizations from past experience. Generalizations of this nature could form the basis of a theory of data science and would serve to unify and scale the teaching of data science to large audiences.
We present a programmatic approach to incorporating ethics into an undergraduate major in statistical and data sciences. We discuss departmental-level initiatives designed to meet the National Academy of Sciences recommendation for integrating ethics into the curriculum from top-to-bottom as our majors progress from our introductory courses to our senior capstone course, as well as from side-to-side through co-curricular programming. We also provide six examples of data science ethics modules used in five different courses at our liberal arts college, each focusing on a different ethical consideration. The modules are designed to be portable such that they can be flexibly incorporated into existing courses at different levels of instruction with minimal disruption to syllabi. We present assessments of our efforts and conclude with next steps and final thoughts.
The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science.
Conversion of raw data into insights and knowledge requires substantial amounts of effort from data scientists. Despite breathtaking advances in Machine Learning (ML) and Artificial Intelligence (AI), data scientists still spend the majority of their effort in understanding and then preparing the raw data for ML/AI. The effort is often manual and ad hoc, and requires some level of domain knowledge. The complexity of the effort increases dramatically when data diversity, both in form and context, increases. In this paper, we introduce our solution, Augmented Data Science (ADS), towards addressing this human bottleneck in creating value from diverse datasets. ADS is a data-driven approach and relies on statistics and ML to extract insights from any data set in a domain-agnostic way to facilitate the data science process. Key features of ADS are the replacement of rudimentary data exploration and processing steps with automation and the augmentation of data scientist judgment with automatically-generated insights. We present building blocks of our end-to-end solution and provide a case study to exemplify its capabilities.
We provide accessible insight into the current replication crisis in statistical science, by revisiting the old metaphor of court trial as hypothesis test. Inter alia, we define and diagnose harmful statistical witch-hunting both in justice and science, which extends to the replication crisis itself, where a hunt on p-values is currently underway.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا