The prospect of pileup induced backgrounds at the High Luminosity LHC (HL-LHC) has stimulated intense interest in technology for charged particle timing at high rates. In contrast to the role of timing for particle identification, which has driven incremental improvements in timing, the LHC timing challenge dictates a specific level of timing performance- roughly 20-30 picoseconds. Since the elapsed time for an LHC bunch crossing (with standard design book parameters) has an rms spread of 170 picoseconds, the $sim50-100$ picosecond resolution now commonly achieved in TOF systems would be insufficient to resolve multiple in-time pileup. Here we present a MicroMegas based structure which achieves the required time precision (ie 24 picoseconds for 150 GeV $mu$s) and could potentially offer an inexpensive solution covering large areas with $sim 1$ cm$^2$ pixel size. We present here a proof-of-principle which motivates further work in our group toward realizing a practical design capable of long-term survival in a high rate experiment.