Do you want to publish a course? Click here

Finite type invariants of knots in homology 3-spheres with respect to null LP-surgeries

95   0   0.0 ( 0 )
 Added by Delphine Moussard
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study a theory of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries. It is an analogue in the setting of the rational homology of the Goussarov-Rozansky theory for knots in integral homology 3-spheres. We give a partial combinatorial description of the graded space associated with our theory and determine some cases when this description is complete. For null-homologous knots in rational homology 3-spheres with a trivial Alexander polynomial, we show that the Kricker lift of the Kontsevich integral and the Lescop equivariant invariant built from integrals in configuration spaces are universal finite type invariants for this theory; in particular it implies that they are equivalent for such knots.



rate research

Read More

111 - Fan Ding , Youlin Li , Zhongtao Wu 2020
In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology 3-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(pm1)$-surgeries along Legendrian links in the standard contact 3-sphere. We also obtain a sufficient condition for contact $(+1)$-surgeries along Legendrian two-component links in the standard contact 3-sphere to be overtwisted via their front projections.
167 - Tadayuki Watanabe 2016
Garoufalidis and Levine defined a filtration for 3-manifolds equipped with some degree 1 map ($mathbb{Z}pi$-homology equivalence) to a fixed 3-manifold $N$ and showed that there is a natural surjection from a space of $pi=pi_1N$-decorated graphs to the graded quotient of the filtration over $mathbb{Z}[frac{1}{2}]$. In this paper, we show that in the case of $N=T^3$ the surjection of Garoufalidis--Levine is actually an isomorphism over $mathbb{Q}$. For the proof, we construct a perturbative invariant by applying Fukayas Morse homotopy theoretic construction to a local system of the quotient field of $mathbb{Q}pi$. The first invariant is an extension of the Casson invariant to $mathbb{Z}pi$-homology equivalences to the 3-torus. The results of this paper suggest that there is a highly nontrivial equivariant quantum invariants for 3-manifolds with $b_1=3$. We also discuss some generalizations of the perturbative invariant for other target spaces $N$.
247 - Tadayuki Watanabe 2015
We study finite type invariants of nullhomologous knots in a closed 3-manifold $M$ defined in terms of certain descending filtration ${mathscr{K}_n(M)}_{ngeq 0}$ of the vector space $mathscr{K}(M)$ spanned by isotopy classes of nullhomologous knots in $M$. The filtration ${mathscr{K}_n(M)}_{n geq 0}$ is defined by surgeries on special kinds of claspers in $M$ having one special leaf. More precisely, when $M$ is fibered over $S^1$ and $H_1(M)=mathbb{Z}$, we study how far the natural surgery map from the space of $mathbb{Q}[t^{pm 1}]$-colored Jacobi diagrams on $S^1$ of degree $n$ to the graded quotient $mathscr{K}_n(M)/mathscr{K}_{n+1}(M)$ can be injective for $nleq 2$. To do this, we construct a finite type invariant of nullhomologous knots in $M$ up to degree 2 that is an analogue of the invariant given in our previous paper arXiv:1503.08735, which is based on Lescops construction of $mathbb{Z}$-equivariant perturbative invariant of 3-manifolds.
Baker showed that 10 of the 12 classes of Berge knots are obtained by surgery on the minimally twisted 5-chain link. In this article we enumerate all hyperbolic knots in S^3 obtained by surgery on the minimally twisted 5 chain link that realize the maximal known distances between slopes corresponding to exceptional (lens, lens), (lens, toroidal), (lens, Seifert fibred spaces) pairs. In light of Bakers work, the classification in this paper conjecturally accounts for most hyperbolic knots in S^3 realizing the maximal distance between these exceptional pairs. All examples obtained in our classification are realized by filling the magic manifold. The classification highlights additional examples not mentioned in Martelli and Petronios survey of the exceptional fillings on the magic manifold. Of particular interest, is an example of a knot with two lens space surgeries that is not obtained by filling the Berge manifold.
254 - Tadayuki Watanabe 2012
We give a generalization of Fukayas Morse homotopy theoretic approach for 2-loop Chern--Simons perturbation theory to 3-valent graphs with arbitrary number of loops at least 2. We construct a sequence of invariants of integral homology 3-spheres with values in a space of 3-valent graphs (Jacobi diagrams or Feynman diagrams) by counting graphs in an integral homology 3-sphere satisfying certain condition described by a set of ordinary differential equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا