No Arabic abstract
This paper considers the unavailability of complete channel state information (CSI) in ultra-dense cloud radio access networks (C-RANs). The user-centric cluster is adopted to reduce the computational complexity, while the incomplete CSI is considered to reduce the heavy channel training overhead, where only large-scale inter-cluster CSI is available. Channel estimation for intra-cluster CSI is also considered, where we formulate a joint pilot allocation and user equipment (UE) selection problem to maximize the number of admitted UEs with fixed number of pilots. A novel pilot allocation algorithm is proposed by considering the multi-UE pilot interference. Then, we consider robust beam-vector optimization problem subject to UEs data rate requirements and fronthaul capacity constraints, where the channel estimation error and incomplete inter-cluster CSI are considered. The exact data rate is difficult to obtain in closed form, and instead we conservatively replace it with its lower-bound. The resulting problem is non-convex, combinatorial, and even infeasible. A practical algorithm, based on UE selection, successive convex approximation (SCA) and semi-definite relaxation approach, is proposed to solve this problem with guaranteed convergence. We strictly prove that semidefinite relaxation is tight with probability 1. Finally, extensive simulation results are presented to show the fast convergence of our proposed algorithm and demonstrate its superiority over the existing algorithms.
Dynamic time-division duplexing (TDD) is considered a promising solution to deal with fast-varying traffic often found in ultra-densely deployed networks. At the same time, it generates more interference which may degrade the performance of some user equipment (UE). When base station (BS) utilization is low, some BSs may not have an UE to serve. Rather than going into sleep mode, the idle BSs can help nearby UEs using joint transmission. To deal with BS-to-BS interference, we propose using joint transmission with dummy symbols where uplink BSs serving uplink UEs participate in the precoding. Since BSs are not aware of the uplink symbols beforehand, any symbols with zero power can be transmitted instead to null the BS-to-BS interference. Numerical results show significant performance gains for uplink and downlink at low and medium utilization. By varying the number of participating uplink BSs in the precoding, we also show that it is possible to successfully trade performance in the two directions.
In this paper, the design of robust linear precoders for the massive multi-input multi-output (MIMO) downlink with imperfect channel state information (CSI) is investigated. The imperfect CSI for each UE obtained at the BS is modeled as statistical CSI under a jointly correlated channel model with both channel mean and channel variance information, which includes the effects of channel estimation error, channel aging and spatial correlation. The design objective is to maximize the expected weighted sum-rate. By combining the minorize-maximize (MM) algorithm with the deterministic equivalent method, an algorithm for robust linear precoder design is derived. The proposed algorithm achieves a stationary point of the expected weighted sum-rate maximization problem. To reduce the computational complexity, two low-complexity algorithms are then derived. One for the general case, and the other for the case when all the channel means are zeros. For the later case, it is proved that the beam domain transmission is optimal, and thus the precoder design reduces to the power allocation optimization in the beam domain. Simulation results show that the proposed robust linear precoder designs apply to various mobile scenarios and achieve high spectral efficiency.
In this paper, we consider the network power minimization problem in a downlink cloud radio access network (C-RAN), taking into account the power consumed at the baseband unit (BBU) for computation and the power consumed at the remote radio heads and fronthaul links for transmission. The power minimization problem for transmission is a fast time-scale issue whereas the power minimization problem for computation is a slow time-scale issue. Therefore, the joint network power minimization problem is a mixed time-scale problem. To tackle the time-scale challenge, we introduce large system analysis to turn the original fast time-scale problem into a slow time-scale one that only depends on the statistical channel information. In addition, we propose a bound improving branch-and-bound algorithm and a combinational algorithm to find the optimal and suboptimal solutions to the power minimization problem for computation, respectively, and propose an iterative coordinate descent algorithm to find the solutions to the power minimization problem for transmission. Finally, a distributed algorithm based on hierarchical decomposition is proposed to solve the joint network power minimization problem. In summary, this work provides a framework to investigate how execution efficiency and computing capability at BBU as well as delay constraint of tasks can affect the network power minimization problem in C-RANs.
In this work the modeling and calibration method of reciprocity error in a coherent TDD coordinated multi-point (CoMP) joint transmission (JT) system are addressed. The modeling includes parameters such as amplitude gains and phase differences of RF chains between the eNBs. The calibration method used for inter-cell antenna calibration is based on precoding matrix indicator (PMI) feedback by UE. Furthermore, we provide some simulation results for evaluating the performance of the calibration method in different cases such as varying estimation-period, cell-specific reference signals (CRS) ports configuration, signal to noise ratio (SNR), phase difference, etc. The main conclusion is that the proposed method for intercell antenna calibration has good performance for estimating the residual phase difference. Keywords-LTE-Advanced; TDD; CoMP; JT; reciprocity error; phase difference; inter-cell antenna calibration
In this paper, we investigate the design of robust and secure transmission in intelligent reflecting surface (IRS) aided wireless communication systems. In particular, a multi-antenna access point (AP) communicates with a single-antenna legitimate receiver in the presence of multiple single-antenna eavesdroppers, where the artificial noise (AN) is transmitted to enhance the security performance. Besides, we assume that the cascaded AP-IRS-user channels are imperfect due to the channel estimation error. To minimize the transmit power, the beamforming vector at the transmitter, the AN covariance matrix, and the IRS phase shifts are jointly optimized subject to the outage rate probability constraints under the statistical cascaded channel state information (CSI) error model that usually models the channel estimation error. To handle the resulting non-convex optimization problem, we first approximate the outage rate probability constraints by using the Bernstein-type inequality. Then, we develop a suboptimal algorithm based on alternating optimization, the penalty-based and semidefinite relaxation methods. Simulation results reveal that the proposed scheme significantly reduces the transmit power compared to other benchmark schemes.