Zero Variance and Hamiltonian Monte Carlo Methods in GARCH Models


Abstract in English

In this paper, we develop Bayesian Hamiltonian Monte Carlo methods for inference in asymmetric GARCH models under different distributions for the error term. We implemented Zero-variance and Hamiltonian Monte Carlo schemes for parameter estimation to try and reduce the standard errors of the estimates thus obtaing more efficient results at the price of a small extra computational cost.

Download