No Arabic abstract
The paper explores the numerical stability and the computational efficiency of a direct method for unfolding the resolution function from the measurements of the neutron induced reactions. A detailed resolution function formalism is laid out, followed by an overview of challenges present in a practical implementation of the method. A special matrix storage scheme is developed in order to facilitate both the memory management of the resolution function matrix, and to increase the computational efficiency of the matrix multiplication and decomposition procedures. Due to its admirable computational properties, a Cholesky decomposition is at the heart of the unfolding procedure. With the smallest but necessary modification of the matrix to be decomposed, the method is successfully applied to system of $10^5times10^5$. However, the amplification of the uncertainties during the direct inversion procedures limits the applicability of the method to high-precision measurements of neutron induced reactions.
Pathways-reduced analysis is one of the techniques used by the Fispact-II nuclear activation and transmutation software to study the sensitivity of the computed inventories to uncertainties in reaction cross-sections. Although deciding which pathways are most important is very helpful in for example determining which nuclear data would benefit from further refinement, pathways-reduced analysis need not necessarily define the most critical reaction, since one reaction may contribute to several different pathways. This work examines three different techniques for ranking reactions in their order of importance in determining the final inventory, comparing the pathways based metric (PBM), the direct method and one based on the Pearson correlation coefficient. Reasons why the PBM is to be preferred are presented.
The modulation transfer function (MTF) represents the frequency domain response of imaging modalities. Here, we report a method for estimating the MTF from sample images. Test images were generated from a number of images, including those taken with an electron microscope and with an observation satellite. These original images were convolved with point spread functions (PSFs) including those of circular apertures. The resultant test images were subjected to a Fourier transformation. The logarithm of the squared norm of the Fourier transform was plotted against the squared distance from the origin. Linear correlations were observed in the logarithmic plots, indicating that the PSF of the test images can be approximated with a Gaussian. The MTF was then calculated from the Gaussian-approximated PSF. The obtained MTF closely coincided with the MTF predicted from the original PSF. The MTF of an x-ray microtomographic section of a fly brain was also estimated with this method. The obtained MTF showed good agreement with the MTF determined from an edge profile of an aluminum test object. We suggest that this approach is an alternative way of estimating the MTF, independently of the image type.
We propose a multi-resolution strategy that is compatible with the lattice Greens function (LGF) technique for solving viscous, incompressible flows on unbounded domains. The LGF method exploits the regularity of a finite-volume scheme on a formally unbounded Cartesian mesh to yield robust and computationally efficient solutions. The original method is spatially adaptive, but challenging to integrate with embedded mesh refinement as the underlying LGF is only defined for a fixed resolution. We present an ansatz for adaptive mesh refinement, where the solutions to the pressure Poisson equation are approximated using the LGF technique on a composite mesh constructed from a series of infinite lattices of differing resolution. To solve the incompressible Navier-Stokes equations, this is further combined with an integrating factor for the viscous terms and an appropriate Runge-Kutta scheme for the resulting differential-algebraic equations. The parallelized algorithm is verified through with numerical simulations of vortex rings, and the collision of vortex rings at high Reynolds number is simulated to demonstrate the reduction in computational cells achievable with both spatial and refinement adaptivity.
We describe a method to detect gravitational waves lasting $O(hours-days)$ emitted by young, isolated neutron stars, such as those that could form after a supernova or a binary neutron star merger, using advanced LIGO/Virgo data. The method is based on a generalization of the FrequencyHough (FH), a pipeline that performs hierarchical searches for continuous gravitational waves by mapping points in the time/frequency plane of the detector to lines in the frequency/spindown plane of the source. We show that signals whose spindowns are related to their frequencies by a power law can be transformed to coordinates where the behavior of these signals is always linear, and can therefore be searched for by the FH. We estimate the sensitivity of our search across different braking indices, and describe the portion of the parameter space we could explore in a search using varying fast Fourier Transform (FFT) lengths.
We discuss the possibility to build a neutron target for nuclear reaction studies in inverse kinematics utilizing a storage ring and radioactive ion beams. The proposed neutron target is a specially designed spallation target surrounded by a large moderator of heavy water (D$_2$O). We present the resulting neutron spectra and their properties as a target. We discuss possible realizations at different experimental facilities.