Do you want to publish a course? Click here

X(3872) as a molecular $Dbar{D}^*$ state in the Bethe-Salpeter equation approach

118   0   0.0 ( 0 )
 Added by Zhenyang Wang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the possibility that the X(3872) can be a $Dbar{D}^*$ molecular bound state in the Bethe-Salpeter equation approach in the ladder and instantaneous approximations. We show that the $Dbar{D}^*$ bound state with quantum numbers $J^{PC}=1^{++}$ exists. We also calculate the decay width of $X(3872) rightarrow gamma J/psi$ channel and compare our result with those from previous calculations.



rate research

Read More

We interpret the $X_1(2900)$ as an $S$-wave $bar{D}_1K$ molecular state in the Bethe-Salpeter equation approach with the ladder and instantaneous approximations for the kernel. By solving the Bethe-Salpeter equation numerically with the kernel containing one-particle-exchange diagrams and introducing three different form factors (monopole, dipole, and exponential form factors) in the verties, we find the bound state exists. We also study the decay width of the decay $X_1(2900)$ to $D^-K^+$.
We interpret the $B_{s1}(5778)$ as an $S$-wave $B^astbar{K}$ molecular state in the Bethe-Salpeter equation approach. In the ladder and instantaneous approximations, and with the kernel containing one-particle-exchange diagrams and introducing three different form factors (monopole, dipole, and exponential form factors) in the vertex, we find the bound state exists. We also study the decay widths of the decay $B_{s1}(5778)rightarrow B_s^astpi$ and the radiative decays $B_{s1}(5778)rightarrow B_sgamma$ and $B_{s1}(5778)rightarrow B_s^{ast}gamma$, which will be instructive for the forthcoming experiments.
We study the possible bound states of the $D_1D$ system in the Bethe-Salpeter (BS) formalism in the ladder and instantaneous approximations. By solving the BS equation numerically with the kernel containing one-particle exchange diagrams and introducing three different form factors (monopole, dipole, and exponential form factors) at the vertices, we investigate whether the isoscalar and isovector $D_1D$ bound states may exist, respectively. We find that $Y(4260)$ could be accommodated as a $D_1D$ molecule, whereas the interpretation of $Z_2^+(4250)$ as a $D_1D$ molecule is disfavored. The bottom analog of $Y(4260)$ may exist but that of $Z_2^+(4250)$ does not.
We present a method to directly solving the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the singularities which appear in the kernel, propagators and Bethe-Salpeter amplitude itself. The off-mass shell scattering amplitude for spinless particles interacting by a one boson exchange is computed for the first time.
156 - M. Blank , A. Krassnigg 2011
Using a well-established effective interaction in a rainbow-ladder truncation model of QCD, we fix the remaining model parameter to the bottomonium ground-state spectrum in a covariant Bethe-Salpeter equation approach and find surprisingly good agreement with the available experimental data including the 2^{--} Upsilon(1D) state. Furthermore, we investigate the consequences of such a fit for charmonium and light-quark ground states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا