Basic mechanisms in the laser control of non-Markovian dynamics


Abstract in English

Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response in strongly coupled Open Quantum Systems (OQS). A converged Hierarchy Equations Of Motion (HEOM) is worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong THz laser pulses. Robust and efficient control is achieved increasing by a factor ?2 non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non- Markovianity and the slowing down of decoherence processes.

Download