Shadows of Bonnor black dihole by chaotic lensing


Abstract in English

We have studied numerically the shadows of Bonnor black dihole through the technique of backward ray-tracing. The presence of magnetic dipole yields non-integrable photon motion, which affects sharply the shadow of the compact object. Our results show that there exists a critical value for the shadow. As the magnetic dipole parameter is less than the critical value, the shadow is a black disk, but as the magnetic dipole parameter is larger than the critical one, the shadow becomes a concave disk with eyebrows possessing a self-similar fractal structure. These behavior are very similar to those of the equal-mass and non-spinning Majumdar-Papapetrou binary black holes. However, we find that the two larger shadows and the smaller eyebrow-like shadows are joined together by the middle black zone for the Bonnor black dihole, which is different from that in the Majumdar-Papapetrou binary black holes spacetime where they are disconnected. With the increase of magnetic dipole parameter, the middle black zone connecting the main shadows and the eyebrow-like shadows becomes narrow. Our result show that the spacetime properties arising from the magnetic dipole yields the interesting patterns for the shadow casted by Bonnor black dihole.

Download