No Arabic abstract
We propose a model which unifies the Left-Right symmetry with the $SU(3)_L$ gauge group, called flipped trinification, and based on the $SU(3)_Cotimes SU(3)_Lotimes SU(3)_Rotimes U(1)_X$ gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, $W_P=(-1)^{3(B-L)+2s}$, and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Viable dark matter candidates can either be a fermion, a scalar or a vector, leading to potentially different dark matter phenomenology.
The flipped trinification, a framework for unifying the 3-3-1 and left-right symmetries, has recently been proposed in order to solve profound questions, the weak parity violation and the number of families, besides the implication for neutrino mass generation and dark matter stability. In this work, we argue that this gauge-completion naturally provides flavor-changing neutral currents in both quark and lepton sectors. The quark flavor changing happens at the tree-level due to the nonuniversal couplings of $Z_{L,R}$, while the lepton flavor changing $lrightarrow lgamma$ starts from the one loop level contributed significantly by the new charged currents of $Y_{L,R}$, which couple ordinary to exotic leptons. These effects disappear in the minimal left-right model, but are present in the framework characterizing a flipped trinification symmetry.
We discuss our recently proposed interpretation of the discrepancy between the bottle and beam neutron lifetime experiments as a sign of a dark sector. The difference between the outcomes of the two types of measurements is explained by the existence of a neutron dark decay channel with a branching fraction 1%. Phenomenologically consistent particle physics models for the neutron dark decay can be constructed and they involve a strongly self-interacting dark sector. We elaborate on the theoretical developments around this idea and describe the efforts undertaken to verify it experimentally.
We study the trinified model, SU(3)_C x SU(3)_L x SU(3)_R x Z_3, with the minimal Higgs sector required for symmetry breaking. There are five Higgs doublets, and gauge-coupling unification results if all five are at the weak scale, without supersymmetry. The radiative see-saw mechanism yields sub-eV neutrino masses, without the need for intermediate scales, additional Higgs fields, or higher-dimensional operators. The proton lifetime is above the experimental limits, with the decay modes p -> bar u K^+ and p -> mu^+ K^0 potentially observable. We also consider supersymmetr
We present a new approach to quintessential inflation, in which both dark energy and inflation are explained by the evolution of a single scalar field. We start from a simple scalar potential with both oscillatory and exponential behavior.We employ the conventional reheating mechanism of new inflation, in which the scalar decays to light fermions with a decay width that is proportional to the scalar mass. Because our scalar mass is proportional to the Hubble rate, this gives adequate reheating at early times while shutting off at late times to preserve quintessence and satisfy nucleosynthesis constraints.
We present the features of the fully flipped 3-3-1-1 model and show that this model leads to dark matter candidates naturally. We study two dark matter scenarios corresponding to the triplet fermion and singlet scalar candidates, and we determine the viable parameter regimes constrained from the observed relic density and direct detection experiments.