Do you want to publish a course? Click here

The Influence of Ceramide Tail Length on the Structure of Bilayers Composed of Stratum Corneum Lipids

74   0   0.0 ( 0 )
 Added by Timothy Moore
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lipid bilayers composed of non-alpha hydroxy sphingosine ceramide (CER NS), cholesterol (CHOL), and free fatty acids (FFA), which are components of the human skin barrier, are studied via molecular dynamics simulations. Since mixtures of these lipids exist in dense gel phases with little molecular mobility at physiological conditions, care must be taken to ensure that the simulations become decorrelated from the initial conditions. Thus, we propose and validate an equilibration protocol based on simulated tempering in which the simulation takes a random walk through temperature space, allowing the system to break out of metastable configurations and hence become decorrelated form its initial configuration. After validating the equilibration protocol, the effects of the lipid composition and ceramide tail length on bilayer properties are studied. Systems containing pure CER NS, CER NS + CHOL, and CER NS + CHOL + FFA, with the CER fatty acid tail length varied within each CER NS-CHOL-FFA composition, are simulated. The bilayer thickness is found to depend on the structure of the center of the bilayer, which arises as a result of the tail length asymmetry between the lipids studied. The hydrogen bonding between the lipid headgroups and with water is found to change with the overall lipid composition, but is mostly independent of the CER fatty acid tail length. Subtle differences in the lateral packing of the lipid tails are also found as a function of CER tail length. Overall, these results provide insight into the experimentally observed trend of altered barrier properties in skin systems where there are more ceramides with shorter tails present.



rate research

Read More

We introduce a novel coarse-grained bead-spring model for flexible polymers to systematically examine the effects of an adjusted bonded potential on the formation and stability of structural macrostates in a thermal environment. The density of states obtained in advanced replica-exchange Monte Carlo simulations is analyzed by employing the recently developed generalized microcanonical inflection-point analysis method, which enables the identification of diverse structural phases and the construction of a suitably parameterized hyperphase diagram. It reveals that icosahedral phases dominate for polymers with asymmetric and narrow bond potentials, whereas polymers with symmetric and more elastic bonds tend to form amorphous structures with non-icosahedral cores. We also observe a hierarchy in the freezing transition behavior associated with the formation of the surface layer after nucleation.
Conformational change of a DNA molecule is frequently observed in multiple biological processes and has been modelled using a chain of strongly coupled oscillators with a nonlinear bistable potential. While the mechanism and properties of conformational change in the model have been investigated and several reduced order models developed, the conformational dynamics as a function of the length of the oscillator chain is relatively less clear. To address this, we used a modified Lindstedt-Poincare method and numerical computations. We calculate a perturbation expansion of the frequency of the models nonzero modes, finding that approximating these modes with their unperturbed dynamics, as in a previous reduced order model, may not hold when the length of the DNA model increases. We investigate the conformational change to local perturbation in models of varying lengths, finding that for chosen input and parameters, there are two regions of DNA length in the model, first where the minimum energy required to undergo the conformational change increases with DNA length; and second, where it is almost independent of the length of the DNA model. We analyze the conformational change in these models by adding randomness to the local perturbation, finding that the tendency of the system to remain in a stable conformation against random perturbation decreases with an increase in the DNA length. These results should help to understand the role of the length of a DNA molecule in influencing its conformational dynamics.
The long-ranged nature of the Coulomb potential requires a proper accounting for the influence of even distant electrostatic boundaries in the determination of the solvation free energy of a charged solute. We introduce an exact rewriting of the free energy change upon charging a solute that explicitly isolates the contribution from these boundaries and quantifies the impact of the different boundaries on the free energy. We demonstrate the importance and advantages of appropriately referencing the electrostatic potential to that of the vacuum through the study of several simple model charge distributions, for which we can isolate an analytic contribution from the boundaries that can be readily evaluated in computer simulations of molecular systems. Finally, we highlight that the constant potential of the bulk dielectric phase - the Bethe potential - cannot contribute to the solvation thermodynamics of a single charged solute when the charge distributions of the solvent and solute do not overlap in relevant configurations. But when the charge distribution of a single solute can overlap with the intramolecular charge distribution of solvent molecules, as is the case in electron holography, for example, the Bethe potential is needed when comparing to experiment. Our work may also provide insight into the validity of extra thermodynamic assumptions traditionally made during the experimental determination of single ion solvation free energies.
It has been shown that a nanoliter chamber separated by a wall of asymmetric obstacles can lead to an inhomogeneous distribution of self-propelled microorganisms. Although it is well established that this rectification effect arises from the interaction between the swimmers and the non-centrosymmetric pillars, here we demonstrate numerically that its efficiency is strongly dependent on the detailed dynamics of the individual microorganism. In particular, for the case of run-and-tumble dynamics, the distribution of run lengths, the rotational diffusion and the partial preservation of run orientation memory through a tumble are important factors when computing the rectification efficiency. In addition, we optimize the geometrical dimensions of the asymmetric pillars in order to maximize the swimmer concentration and we illustrate how it can be used for sorting by swimming strategy in a long array of parallel obstacles.
Droplet interface bilayers are a convenient model system to study the physio-chemical properties of phospholipid bilayers, the major component of the cell membrane. The mechanical response of these bilayers to various external mechanical stimuli is an active area of research due to implications for cellular viability and development of artificial cells. In this manuscript we characterize the separation mechanics of droplet interface bilayers under step strain using a combination of experiments and numerical modeling. Initially, we show that the bilayer surface energy can be obtained using principles of energy conservation. Subsequently, we subject the system to a step strain by separating the drops in a step wise manner, and track the evolution of the bilayer contact angle and radius. The relaxation time of the bilayer contact angle and radius, along with the decay magnitude of the bilayer radius were observed to increase with each separation step. By analyzing the forces acting on the bilayer and the rate of separation, we show that the bilayer separates primarily through the peeling process with the dominant resistance to separation coming from viscous dissipation associated with corner flows. Finally, we explain the intrinsic features of the observed bilayer separation by means of a mathematical model comprising of the Young-Laplace equation and an evolution equation. We believe that the reported experimental and numerical results extend the scientific understanding of lipid bilayer mechanics, and that the developed experimental and numerical tools offer a convenient platform to study the mechanics of other types of bilayers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا