Do you want to publish a course? Click here

Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification

86   0   0.0 ( 0 )
 Added by Dangwei Li
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Person Re-identification (ReID) is to identify the same person across different cameras. It is a challenging task due to the large variations in person pose, occlusion, background clutter, etc How to extract powerful features is a fundamental problem in ReID and is still an open problem today. In this paper, we design a Multi-Scale Context-Aware Network (MSCAN) to learn powerful features over full body and body parts, which can well capture the local context knowledge by stacking multi-scale convolutions in each layer. Moreover, instead of using predefined rigid parts, we propose to learn and localize deformable pedestrian parts using Spatial Transformer Networks (STN) with novel spatial constraints. The learned body parts can release some difficulties, eg pose variations and background clutters, in part-based representation. Finally, we integrate the representation learning processes of full body and body parts into a unified framework for person ReID through multi-class person identification tasks. Extensive evaluations on current challenging large-scale person ReID datasets, including the image-based Market1501, CUHK03 and sequence-based MARS datasets, show that the proposed method achieves the state-of-the-art results.



rate research

Read More

Person re-identification (reID) by CNNs based networks has achieved favorable performance in recent years. However, most of existing CNNs based methods do not take full advantage of spatial-temporal context modeling. In fact, the global spatial-temporal context can greatly clarify local distractions to enhance the target feature representation. To comprehensively leverage the spatial-temporal context information, in this work, we present a novel block, Interaction-Aggregation-Update (IAU), for high-performance person reID. Firstly, Spatial-Temporal IAU (STIAU) module is introduced. STIAU jointly incorporates two types of contextual interactions into a CNN framework for target feature learning. Here the spatial interactions learn to compute the contextual dependencies between different body parts of a single frame. While the temporal interactions are used to capture the contextual dependencies between the same body parts across all frames. Furthermore, a Channel IAU (CIAU) module is designed to model the semantic contextual interactions between channel features to enhance the feature representation, especially for small-scale visual cues and body parts. Therefore, the IAU block enables the feature to incorporate the globally spatial, temporal, and channel context. It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet. The experiments show that IAUnet performs favorably against state-of-the-art on both image and video reID tasks and achieves compelling results on a general object categorization task. The source code is available at https://github.com/blue-blue272/ImgReID-IAnet.
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-identification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.
93 - Yifan Sun , Qin Xu , Yali Li 2019
This paper considers a realistic problem in person re-identification (re-ID) task, i.e., partial re-ID. Under partial re-ID scenario, the images may contain a partial observation of a pedestrian. If we directly compare a partial pedestrian image with a holistic one, the extreme spatial misalignment significantly compromises the discriminative ability of the learned representation. We propose a Visibility-aware Part Model (VPM), which learns to perceive the visibility of regions through self-supervision. The visibility awareness allows VPM to extract region-level features and compare two images with focus on their shared regions (which are visible on both images). VPM gains two-fold benefit toward higher accuracy for partial re-ID. On the one hand, compared with learning a global feature, VPM learns region-level features and benefits from fine-grained information. On the other hand, with visibility awareness, VPM is capable to estimate the shared regions between two images and thus suppresses the spatial misalignment. Experimental results confirm that our method significantly improves the learned representation and the achieved accuracy is on par with the state of the art.
Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings. The widely studied closed-world setting is usually applied under various research-oriented assumptions, and has achieved inspiring success using deep learning techniques on a number of datasets. We first conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or at least comparable performance on twelve datasets for FOUR different Re-ID tasks. Meanwhile, we introduce a new evaluation metric (mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re-ID system for real applications. Finally, some important yet under-investigated open issues are discussed.
It is prohibitively expensive to annotate a large-scale video-based person re-identification (re-ID) dataset, which makes fully supervised methods inapplicable to real-world deployment. How to maximally reduce the annotation cost while retaining the re-ID performance becomes an interesting problem. In this paper, we address this problem by integrating an active learning scheme into a deep learning framework. Noticing that the truly matched tracklet-pairs, also denoted as true positives (TP), are the most informative samples for our re-ID model, we propose a sampling criterion to choose the most TP-likely tracklet-pairs for annotation. A view-aware sampling strategy considering view-specific biases is designed to facilitate candidate selection, followed by an adaptive resampling step to leave out the selected candidates that are unnecessary to annotate. Our method learns the re-ID model and updates the annotation set iteratively. The re-ID model is supervised by the tracklets pesudo labels that are initialized by treating each tracklet as a distinct class. With the gained annotations of the actively selected candidates, the tracklets pesudo labels are updated by label merging and further used to re-train our re-ID model. While being simple, the proposed method demonstrates its effectiveness on three video-based person re-ID datasets. Experimental results show that less than 3% pairwise annotations are needed for our method to reach comparable performance with the fully-supervised setting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا