Do you want to publish a course? Click here

Electroweak-Charged Bound States as LHC Probes of Hidden Forces

77   0   0.0 ( 0 )
 Added by Lingfeng Li
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We explore the LHC reach on beyond-the-Standard Model (BSM) particles $X$ associated with a new strong force in a hidden sector. We focus on the motivated scenario where the SM and hidden sectors are connected by fermionic mediators $psi^{+, 0}$ that carry SM electroweak charges. The most promising signal is the Drell-Yan production of a $psi^pm bar{psi}^0$ pair, which forms an electrically charged vector bound state $Upsilon^pm$ due to the hidden force and later undergoes resonant annihilation into $W^pm X$. We analyze this final state in detail in the cases where $X$ is a real scalar $phi$ that decays to $bbar{b}$, or a dark photon $gamma_d$ that decays to dileptons. For prompt $X$ decays, we show that the corresponding signatures can be efficiently probed by extending the existing ATLAS and CMS diboson searches to include heavy resonance decays into BSM particles. For long-lived $X$, we propose new searches where the requirement of a prompt hard lepton originating from the $W$ boson ensures triggering and essentially removes any SM backgrounds. To illustrate the potential of our results, we interpret them within two explicit models that contain strong hidden forces and electroweak-charged mediators, namely $lambda$-supersymmetry (SUSY) and non-SUSY ultraviolet extensions of the Twin Higgs model. The resonant nature of the signals allows for the reconstruction of the mass of both $Upsilon^pm$ and $X$, thus providing a wealth of information about the hidden sector.



rate research

Read More

We study the complementarity between the Large Hadron Collider (LHC) and future lepton colliders in probing electroweak baryogenesis induced by an additional bottom Yukawa coupling $rho_{bb}$. The context is general two Higgs doublet model (g2HDM) where such additional bottom Yukawa coupling can account for the observed baryon asymmetry of the Universe if $mbox{Im}(rho_{bb}) gtrsim 0.058$. We find that LHC would probe the nominal $mbox{Im}(rho_{bb})$ required for baryogenesis to some extent via $bg to bA to bZh$ process if $300~mbox{GeV}lesssim m_A lesssim 450$ GeV, where $A$ is the CP-odd scalar in g2HDM. We show that future electron positron collider such as International Linear Collider with $500$ GeV and 1 TeV collision energies may offer unique probe for the nominal $mbox{Im}(rho_{bb})$ via $e^+ e^- to Z^*to A H$ process followed by $A,H to b bar b$ decays in four $b$-jets signature. For complementarity we also study the resonant diHiggs productions, which may give an insight into strong first-order electroweak phase transition, via $e^+ e^- to Z^*to A H to A h h$ process in six $b$-jets signature. We find that 1 TeV collision energy with $mathcal{O}(1)~text{ab}^{-1}$ integrated luminosity could offer an ideal environment for the discovery.
We present a state-of-the-art calculation of the next-to-leading-order electroweak corrections to ZZ production, including the leptonic decays of the Z bosons into $mu^+mu^-mathrm{e}^+mathrm{e}^-$ or $mu^+mu^-mu^+mu^-$ final states. We use complete leading-order and next-to-leading-order matrix elements for four-lepton production, including contributions of virtual photons and all off-shell effects of Z bosons, where the finite Z-boson width is taken into account using the complex-mass scheme. The matrix elements are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential distributions. We present integrated and differential cross sections for the LHC at 13 TeV both for an inclusive setup where only lepton identification cuts are applied, and for a setup motivated by Higgs-boson analyses in the four-lepton decay channel. The electroweak corrections are divided into photonic and purely weak contributions. The former show the well-known pronounced tails near kinematical thresholds and resonances; the latter are generically at the level of $sim-5%$ and reach several $-10%$ in the high-energy tails of distributions. Comparing the results for $mu^+mu^-mathrm{e}^+mathrm{e}^-$ and $mu^+mu^-mu^+mu^-$ final states, we find significant differences mainly in distributions that are sensitive to the $mu^+mu^-$ pairing in the $mu^+mu^-mu^+mu^-$ final state. Differences between $mu^+mu^-mathrm{e}^+mathrm{e}^-$ and $mu^+mu^-mu^+mu^-$ channels due to interferences of equal-flavour leptons in the final state can reach up to $10%$ in off-shell-sensitive regions. Contributions induced by incoming photons, i.e. photon-photon and quark-photon channels, are included, but turn out to be phenomenologically unimportant.
A very light (GeV scale) dark gauge boson ($Z$) is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the $3.6 sigma$ deviation in the muon $g$-2 measurement. We suggest top quark decays as a venue to search for light dark force carriers at the LHC. Such $Z$s can be easily boosted, and they can decay into highly collimated leptons (lepton-jet) with large branching ratio. We investigate a scenario where a top quark decays to $b W$ accompanied by one or multiple dark force carriers and find that such a scenario could be easily probed at the early stage of LHC Run 2.
We present a comprehensive study of the electroweak interactions using the available Higgs and electroweak diboson production results from LHC Runs 1 and 2 as well as the electroweak precision data, in terms of the dimension-six operators. Under the assumption that no new tree level sources of flavor violation nor violation of universality of the weak current is introduced, the analysis involves 21 operators. We assess the impact of the data on kinematic distributions for the Higgs production at the LHC by comparing the results obtained including the simplified template cross section data with those in which only total Higgs signal strengths are considered. We also compare the results obtained when including the dimension-six anomalous contributions to order $1/Lambda^2$ and to order $1/Lambda^4$. As an illustration of the LHC potential to indirectly learn about specific forms of new physics, we adapt the analysis to constrain the parameter space for a few simple extensions of the standard model which generate a subset of the dimension-six operators at tree level.
The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states $mu^+mu^- e^+ u_e$, $mu^+mu^- e^- bar u_e$, $mu^+mu^- mu^+ u_mu$, and $mu^+mu^- mu^- bar u_mu$ at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between $-3%$ and $-6%$, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to $-30%$ in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by $+2%$. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا