No Arabic abstract
The standard approach to realize a quantum repeater relies upon probabilistic but heralded entangled state manipulations and the storage of quantum states while waiting for successful events. In the literature on this class of repeaters, calculating repeater rates has typically depended on approximations assuming sufficiently small probabilities. Here we propose an exact and systematic approach including an algorithm based on Markov chain theory to compute the average waiting time (and hence the transmission rates) of quantum repeaters with arbitrary numbers of links. For up to four repeater segments, we explicitly give the exact rate formulae for arbitrary entanglement swapping probabilities. Starting with three segments, we explore schemes with arbitrary (not only doubling) and dynamical (not only predetermined) connections. The effect of finite memory times is also considered and the relative influence of the classical communication (of heralded signals) is shown to grow significantly for larger probabilities. Conversely, we demonstrate that for small swapping probabilities the statistical behavior of the waiting time in a quantum repeater cannot be characterized by its average value alone and additional statistical quantifiers are needed. For large repeater systems, we propose a recursive approach based on exactly but still efficiently computable waiting times of sufficiently small sub-repeaters. This approach leads to better lower bounds on repeater rates compared to existing schemes.
We formulate the problem of finding the optimal entanglement swapping scheme in a quantum repeater chain as a Markov decision process and present its solution for different repeaters sizes. Based on this, we are able to demonstrate that the commonly used doubling scheme for performing probabilistic entanglement swapping of probabilistically distributed entangled qubit pairs in quantum repeaters does not always produce the best possible raw rate. Focussing on this figure of merit, without considering additional probabilistic elements for error suppression such as entanglement distillation on higher nesting levels, our approach reveals that a power-of-two number of segments has no privileged position in quantum repeater theory; the best scheme can be constructed for any number of segments. Moreover, classical communication can be included into our scheme, and we show how this influences the raw waiting time for different number of segments, confirming again the optimality of non-doubling in some relevant parameter regimes. Thus, our approach provides the minimal possible waiting time of quantum repeaters in a fairly general physical setting.
A feasible route towards implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters, by accounting for the DLCZ self-purification property, in the presence of multiple excitations in the ensemble memories as well as loss and other sources of inefficiency in the channel and measurement modules. We then use our results to find the generation rate of secure key bits for QKD systems that rely on DLCZ quantum repeaters. We compare the key generation rate per logical memory employed in the two cases of with and without a repeater node. We find the cross-over distance beyond which the repeater system outperforms the non-repeater one. That provides us with the optimum inter-node distancing in quantum repeater systems. We also find the optimal excitation probability at which the QKD rate peaks. Such an optimum probability, in most regimes of interest, is insensitive to the total distance.
We report entanglement swapping with time-bin entangled photon pairs, each constituted of a 795 nm photon and a 1533 nm photon, that are created via spontaneous parametric down conversion in a non-linear crystal. After projecting the two 1533 nm photons onto a Bell state, entanglement between the two 795 nm photons is verified by means of quantum state tomography. As an important feature, the wavelength and bandwidth of the 795 nm photons is compatible with Tm:LiNbO3-based quantum memories, making our experiment an important step towards the realization of a quantum repeater.
Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of non-classical light can be used for entanglement swapping, but quantum communication technologies with device-independent functionalities demand for push-button operation that, in principle, can be implemented using single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent requirements on the efficiency and purity of generation of entangled states. Here we tackle this challenge and show that pairs of polarization-entangled photons generated on-demand by a GaAs quantum dot can be used to successfully demonstrate all-photonic entanglement swapping. Moreover, we develop a theoretical model that provides quantitative insight on the critical figures of merit for the performance of the swapping procedure. This work shows that solid-state quantum emitters are mature for quantum networking and indicates a path for scaling up.
In this paper, we present a quantum secure multi-party summation protocol, which allows multiple mutually distrustful parties to securely compute the summation of their secret data. In the presented protocol, a semitrusted third party is introduced to help multiple parties to achieve this secure task. Besides, the entanglement swapping of $d$-level cat states and Bell states is employed to securely transmit message between each party and the semitrusted third party. At last, its security against some common attacks is analyzed, which shows that the presented protocol is secure in theory.