Insight-HXMT observations of the first binary neutron star merger GW170817


Abstract in English

Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and textit{Fermi}/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard textit{Insight}-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area ($sim$1000 cm$^2$) and microsecond time resolution in 0.2-5 MeV. In addition, textit{Insight}-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although it did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, textit{Insight}-HXMT/HE provides one of the most stringent constraints (~10$^{-7}$ to 10$^{-6}$ erg/cm$^2$/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of textit{Insight}-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.

Download