Do you want to publish a course? Click here

Analytical description of the survival probability of coherent states in regular regimes

55   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using coherent states as initial states, we investigate the quantum dynamics of the Lipkin-Meshkov-Glick (LMG) and Dicke models in the semi-classical limit. They are representative models of bounded systems with one- and two-degrees of freedom, respectively. The first model is integrable, while the second one has both regular and chaotic regimes. Our analysis is based on the survival probability. Within the regular regime, the energy distribution of the initial coherent states consists of quasi-harmonic sub-sequences of energies with Gaussian weights. This allows for the derivation of analytical expressions that accurately describe the entire evolution of the survival probability, from $t=0$ to the saturation of the dynamics. The evolution shows decaying oscillations with a rate that depends on the anharmonicity of the spectrum and, in the case of the Dicke model, on interference terms coming from the simultaneous excitation of its two-degrees of freedom. As we move away from the regular regime, the complexity of the survival probability is shown to be closely connected with the properties of the corresponding classical phase space. Our approach has broad applicability, since its central assumptions are not particular of the studied models.



rate research

Read More

The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time $t$, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.
238 - G. Liu , O. Beer , Y. Margalit 2018
We report two novel effects in an inhomogeneous ensemble of two-level systems driven by an external field. First, we observe a rigidity of the oscillation frequency: the dominant Rabi oscillation frequency does not change with the frequency of the driving field, in contrast to the well-known law of Rabi frequency increase with growing detuning of the driving field. Second, we observe a time-dependent frequency shift of the ensemble-averaged oscillation. We show that these effects follow from the inhomogeneity of the two-level splitting across the ensemble, allowing for a distribution of local oscillations in which those with high frequencies interfere destructively and decay faster than those with a low frequency, which are the only to survive in the output signal. Hence, coherence emerges from long-lived oscillations in an inhomogeneous ensemble. We analyze the Fourier spectrum of the time-dependent oscillation signal and find a non-trivial spectral structure that is double peaked for certain parameters. We show that the effects observed in alkali vapor are universal and expected in any system with a moderate inhomogeneity driven by an external field.
In an externally driven multilevel quantum system observation that the NEXT jump has not yet happened affects its future development. In previous work [Phys. Rev. A36, 929 (1987)] it was shown that this class of measurement makes it possible to observe remarkably long dark intervals -- or intermittency -- in the atomic fluorescence of an atom with 3 or more levels. Those calculations were carried out when the driven oscillations or Rabi flopping between the ground state and a strongly fluorescing state were fast compared to its lifetime. In systems with solid state Qubits the accessible parameter space is generally limited to the regime where oscillations are slower than the lifetime. In this paper we evaluate intermittency in atomic transitions, due to measurements with a null result, in this limit. During the dark periods the wave function of the continuously measured multilevel system is coherent.
The gauge invariance of the evolution equations of tomographic probability distribution functions of quantum particles in an electromagnetic field is illustrated. Explicit expressions for the transformations of ordinary tomograms of states under a gauge transformation of electromagnetic field potentials are obtained. Gauge-independent optical and symplectic tomographic quasi-distributions and tomographic probability distributions of states of quantum system are introduced, and their evolution equations having the Liouville equation in corresponding representations as the classical limit are found.
125 - D. B. Ion IFIN-HH 2006
In this paper an analytical description of the hadron-hadron scattering is presented by using PMD-SQS-optimum principle in which the differential cross sections in the forward and backward c.m. angles are considered fixed from the experimental data. Experimental tests of the PMD-SQS-optimal predictions, obained by using the available phase shifts, as well as from direct experimental data, are presented. It is shown that the actual experimental data for the differential cross sections of all principal hadron-hadron [nucleon-nucleon, antiproton-proton, mezon-nucleon] scatterings at all energies higher than 2 GeV, can be well systematized by PMD-SQS predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا