Do you want to publish a course? Click here

Observations of the first electromagnetic counterpart to a gravitational wave source by the TOROS collaboration

71   0   0.0 ( 0 )
 Added by Lucas Macri
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of prompt optical follow-up of the electromagnetic counterpart of the gravitational-wave event GW170817 by the Transient Optical Robotic Observatory of the South Collaboration (TOROS). We detected highly significant dimming in the light curves of the counterpart (Delta g=0.17+-0.03 mag, Delta r=0.14+-0.02 mag, Delta i=0.10 +- 0.03 mag) over the course of only 80 minutes of observations obtained ~35 hr after the trigger with the T80-South telescope. A second epoch of observations, obtained ~59 hr after the event with the EABA 1.5m telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this event was a blue kilonova relatively free of lanthanides.



rate research

Read More

We discovered Swope Supernova Survey 2017a (SSS17a) in the LIGO/Virgo Collaboration (LVC) localization volume of GW170817, the first detected binary neutron star (BNS) merger, only 10.9 hours after the trigger. No object was present at the location of SSS17a only a few days earlier, providing a qualitative spatial and temporal association with GW170817. Here we quantify this association, finding that SSS17a is almost certainly the counterpart of GW170817, with the chance of a coincidence being < 9 x 10^-6 (90% confidence). We arrive at this conclusion by comparing the optical properties of SSS17a to other known astrophysical transients, finding that SSS17a fades and cools faster than any other observed transient. For instance, SSS17a fades >5 mag in g within 7 days of our first data point while all other known transients of similar luminosity fade by <1 mag during the same time period. Its spectra are also unique, being mostly featureless, even as it cools. The rarity of SSS17a-like transients combined with the relatively small LVC localization volume and recent non-detection imply the extremely unlikely chance coincidence. We find that the volumetric rate of SSS17a-like transients is < 1.6 x 10^4 Gpc^-3 year^-1 and the Milky Way rate is <0.19 per century. A transient survey designed to discover similar events should be high cadence and observe in red filters. The LVC will likely detect substantially more BNS mergers than current optical surveys will independently discover SSS17a-like transients, however a 1-day cadence survey with LSST could discover an order of magnitude more events.
Gravitational waves were discovered with the detection of binary black hole mergers and they should also be detectable from lower mass neutron star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal called a kilonova. The gravitational wave source GW170817 arose from a binary neutron star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC4993, which is spatially coincident with GW170817 and a weak short gamma-ray burst. The transient has physical parameters broadly matching the theoretical predictions of blue kilonovae from neutron star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 Msol, with an opacity of kappa <= 0.5 cm2/gm at a velocity of 0.2 +/- 0.1c. The power source is constrained to have a power law slope of beta = -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. We identify line features in the spectra that are consistent with light r-process elements (90 < A < 140). As it fades, the transient rapidly becomes red, and emission may have contribution by a higher opacity, lanthanide-rich ejecta component. This indicates that neutron star mergers produce gravitational waves, radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10.2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broad-band UV through IR photometry of NGC 4993. The spectrum and broad-band spectral-energy distribution indicate that NGC 4993 has a stellar mass of log (M/M_solar) = 10.49^{+0.08}_{-0.20} and star formation rate of 0.003 M_solar/yr, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude M_V > -5.8 mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.
We searched for an optical counterpart to the first gravitational wave source discovered by LIGO (GW150914), using a combination of the Pan-STARRS1 wide-field telescope and the PESSTO spectroscopic follow-up programme. As the final LIGO sky maps changed during analysis, the total probability of the source being spatially coincident with our fields was finally only 4.2 per cent. Therefore we discuss our results primarily as a demonstration of the survey capability of Pan-STARRS and spectroscopic capability of PESSTO. We mapped out 442 square degrees of the northern sky region of the initial map. We discovered 56 astrophysical transients over a period of 41 days from the discovery of the source. Of these, 19 were spectroscopically classified and a further 13 have host galaxy redshifts. All transients appear to be fairly normal supernovae and AGN variability and none is obviously linked with GW150914. We illustrate the sensitivity of our survey by defining parameterised lightcurves with timescales of 4, 20 and 40 days and use the sensitivity of the Pan-STARRS1 images to set limits on the luminosities of possible sources. The Pan-STARRS1 images reach limiting magnitudes of i = 19.2, 20.0 and 20.8 respectively for the three timescales. For long timescale parameterised lightcurves (with FWHM=~40d) we set upper limits of M_i <= -17.2 -0.9/+1.4 if the distance to GW150914 is D = 400 +/- 200Mpc. The number of type Ia SN we find in the survey is similar to that expected from the cosmic SN rate, indicating a reasonably complete efficiency in recovering supernova like transients out to D = 400 +/- 200 Mpc.
We present a search for an electromagnetic counterpart of the gravitational wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i_ps filter starting 11.5hr after the LIGO information release and lasting for a further 28 days. The first observations started 49.5hr after the time of the GW151226 detection. We typically reached sensitivity limits of i_ps = 20.3-20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m~19. We found 49 extragalactic transients (that are not obviously AGN), including a faint transient in a galaxy at 7Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226 which evolved into a type Ibn supernova. The redshift of the transient is secure at z=0.1747 +/- 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS-NS mergers producing kilonovae at D < 100 Mpc which is promising for future LIGO/Virgo searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا