No Arabic abstract
We present UV, optical, and NIR photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced LIGO/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at $0.47$ days to $18.5$ days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the {it Hubble Space Telescope} ({it HST}). The spectral energy distribution (SED) inferred from this photometry at $0.6$ days is well described by a blackbody model with $Tapprox 8300$ K, a radius of $Rapprox 4.5times 10^{14}$ cm (corresponding to an expansion velocity of $vapprox 0.3c$), and a bolometric luminosity of $L_{rm bol}approx 5times10^{41}$ erg s$^{-1}$. At $1.5$ days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set we find that models with heating from radioactive decay of $^{56}$Ni, or those with only a single component of opacity from $r$-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data, the resulting blue component has $M_mathrm{ej}^mathrm{blue}approx 0.01$ M$_odot$ and $v_mathrm{ej}^mathrm{blue}approx 0.3$c, and the red component has $M_mathrm{ej}^mathrm{red}approx 0.04$ M$_odot$ and $v_mathrm{ej}^mathrm{red}approx 0.1$c. These ejecta masses are broadly consistent with the estimated $r$-process production rate required to explain the Milky Way $r$-process abundances, providing the first evidence that BNS mergers can be a dominant site of $r$-process enrichment.
We present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range of $z approx 0.12-2.6$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $approx 3000$ times less than the median value of on-axis short GRB X-ray afterglows, and $gtrsim10^{4}$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $approx 3-5$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $lesssim 1$ day timescales also rules out a blue kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.
We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter ($13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $gtrsim 10^{48}$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $gtrsim 20^{circ}$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $sim 10^{49}-10^{50}$ erg that exploded in a uniform density environment with $nsim 10^{-4}-10^{-2}$ cm$^{-3}$, viewed at an angle of $sim 20^{circ}-40^{circ}$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $sim 5-10$ years that will remain detectable for decades with next-generation radio facilities, making GW,170817 a compelling target for long-term radio monitoring.
We present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced LIGO/Virgo. Our dataset comprises seven epochs of J+H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, including spectral peaks near 1.07 and 1.55 microns. Our fiducial model with 0.04 M_sun of ejecta, an ejection velocity of v=0.1c, and a lanthanide concentration of X_lan=1e-2 provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 d after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r-process elements.
We present the first effort to aggregate, homogenize, and uniformly model the combined ultraviolet, optical, and near-infrared dataset for the electromagnetic counterpart of the binary neutron star merger GW170817. By assembling all of the available data from 18 different papers and 46 different instruments, we are able to identify and mitigate systematic offsets between individual datasets, and to identify clear outlying measurements, with the resulting pruned and adjusted dataset offering an opportunity to expand the study of the kilonova. The unified dataset includes 647 individual flux measurements, spanning 0.45 to 29.4 days post-merger, and thus has greater constraining power for physical models than any single dataset. We test a number of semi-analytical models and find that the data are well modeled with a three-component kilonova model: a blue lanthanide-poor component with Mej~0.020 Msol and vej~0.27c; an intermediate opacity purple component with Mej~0.047 Msol and vej~0.15c; and a red lanthanide-rich component with Mej~0.011 Msol and vej~0.14c. We further explore the possibility of ejecta asymmetry and its impact on the estimated parameters. From the inferred parameters we draw conclusions about the physical mechanisms responsible for the various ejecta components, the properties of the neutron stars, and, combined with an up-to-date merger rate, the implications for r-process enrichment via this channel. To facilitate future studies of this keystone event we make the unified dataset and our modeling code public.
We present the results from a search for the electromagnetic counterpart of the LIGO/Virgo event S190510g using the Dark Energy Camera (DECam). S190510g is a binary neutron star (BNS) merger candidate of moderate significance detected at a distance of 227$pm$92 Mpc and localized within an area of 31 (1166) square degrees at 50% (90%) confidence. While this event was later classified as likely non-astrophysical in nature within 30 hours of the event, our short latency search and discovery pipeline identified 11 counterpart candidates, all of which appear consistent with supernovae following offline analysis and spectroscopy by other instruments. Later reprocessing of the images enabled the recovery of 6 more candidates. Additionally, we implement our candidate selection procedure on simulated kilonovae and supernovae under DECam observing conditions (e.g., seeing, exposure time) with the intent of quantifying our search efficiency and making informed decisions on observing strategy for future similar events. This is the first BNS counterpart search to employ a comprehensive simulation-based efficiency study. We find that using the current follow-up strategy, there would need to be 19 events similar to S190510g for us to have a 99% chance of detecting an optical counterpart, assuming a GW170817-like kilonova. We further conclude that optimization of observing plans, which should include preference for deeper images over multiple color information, could result in up to a factor of 1.5 reduction in the total number of followups needed for discovery.