Do you want to publish a course? Click here

Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817

125   0   0.0 ( 0 )
 Added by LVC Publications
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The source of the gravitational-wave signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two week long electromagnetic counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using gravitational-wave measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the gravitational-wave measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between $M_{ej} = 10^{-3} - 10^{-2} M_{odot}$ for various equations of state, assuming the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if $gtrsim10%$ of the matter dynamically ejected from BNS mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.



rate research

Read More

The neutron star (NS) merger GW170817 was followed over several days by optical-wavelength (blue) kilonova (KN) emission likely powered by the radioactive decay of light r-process nuclei synthesized by ejecta with a low neutron abundance (electron fraction Ye ~ 0.25-0.35). While the composition and high velocities of the blue KN ejecta are consistent with shock-heated dynamical material, the large quantity is in tension with the results of numerical simulations. We propose an alternative ejecta source: the neutrino-heated, magnetically-accelerated wind from the strongly-magnetized hypermassive NS (HMNS) remnant. A rapidly-spinning HMNS with an ordered surface magnetic field of strength B ~ 1-3e14 G and lifetime t_rem ~ 0.1-1 s can simultaneously explain the velocity, total mass, and electron fraction of the blue KN ejecta. The inferred HMNS lifetime is close to its Alfven crossing time, suggesting global magnetic torques could be responsible for bringing the HMNS into solid body rotation and instigating its gravitational collapse. Different origins for the KN ejecta may be distinguished by their predictions for the emission in the first hours after the merger, when the luminosity is enhanced by heating from internal shocks; the latter are likely generic to any temporally-extended ejecta source (e.g. magnetar or accretion disk wind) and are not unique to the emergence of a relativistic jet. The same shocks could mix and homogenizes the composition to a low but non-zero lanthanide mass fraction, X_La ~ 1e-3, as advocated by some authors, but only if the mixing occurs after neutrons are consumed in the r-process on a timescale >~ 1 s.
In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.
Recent detection of gravitational waves from a neutron star (NS) merger event GW170817 and identification of an electromagnetic counterpart provide a unique opportunity to study the physical processes in NS mergers. To derive properties of ejected material from the NS merger, we perform radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger. We find that the observed near-infrared emission lasting for > 10 days is explained by 0.03 Msun of ejecta containing lanthanide elements. However, the blue optical component observed at the initial phases requires an ejecta component with a relatively high electron fraction (Ye). We show that both optical and near-infrared emissions are simultaneously reproduced by the ejecta with a medium Ye of ~ 0.25. We suggest that a dominant component powering the emission is post-merger ejecta, which exhibits that mass ejection after the first dynamical ejection is quite efficient. Our results indicate that NS mergers synthesize a wide range of r-process elements and strengthen the hypothesis that NS mergers are the origin of r-process elements in the Universe.
During the second observing run of the Laser Interferometer gravitational- wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), quickly followed by a coincident short gamma-ray burst trigger by the Fermi satellite. The Distance Less Than 40 (DLT40) Mpc supernova search performed pointed follow-up observations of a sample of galaxies regularly monitored by the survey which fell within the combined LIGO+Virgo localization region, and the larger Fermi gamma ray burst error box. Here we report the discovery of a new optical transient (DLT17ck, also known as SSS17a; it has also been registered as AT 2017gfo) spatially and temporally coincident with GW170817. The photometric and spectroscopic evolution of DLT17ck are unique, with an absolute peak magnitude of Mr = -15.8 pm 0.1 and an r-band decline rate of 1.1mag/d. This fast evolution is generically consistent with kilonova models, which have been predicted as the optical counterpart to binary neutron star coalescences. Analysis of archival DLT40 data do not show any sign of transient activity at the location of DLT17ck down to r~19 mag in the time period between 8 months and 21 days prior to GW170817. This discovery represents the beginning of a new era for multi-messenger astronomy opening a new path to study and understand binary neutron star coalescences, short gamma-ray bursts and their optical counterparts.
The merger of two dense stellar remnants including at least one neutron star (NS) is predicted to produce gravitational waves (GWs) and short duration gamma ray bursts (GRBs). In the process, neutron-rich material is ejected from the system and heavy elements are synthesized by r-process nucleosynthesis. The radioactive decay of these heavy elements produces additional transient radiation termed kilonova or macronova. We report the detection of linear optical polarization P = (0.50 +/- 0.07)% at 1.46 days after detection of the GWs from GW170817, a double neutron star merger associated with an optical macronova counterpart and a short GRB. The optical emission from a macronova is expected to be characterized by a blue, rapidly decaying, component and a red, more slowly evolving, component due to material rich of heavy elements, the lanthanides. The polarization measurement was made when the macronova was still in its blue phase, during which there is an important contribution from a lanthanide-free outflow. The low degree of polarization is consistent with intrinsically unpolarized emission scattered by Galactic dust, suggesting a symmetric geometry of the emitting region and low inclination of the merger system. Stringent upper limits to the polarization degree from 2.45 - 9.48 days post-burst are consistent with the lanthanides-rich macronova interpretation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا