Do you want to publish a course? Click here

Circular and linear magnetic quantum ratchet effects in dual-grating-gate CdTe-based nanostructures

134   0   0.0 ( 0 )
 Added by Sergey Ganichev
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the observation and systematic study of polarization sensitive magnetic quantum ratchet effects induced by alternating electric fields in the terahertz frequency range. The effects are detected in (Cd,Mn)Te-based quantum well (QW) structures with inter-digitated dual-grating-gate (DGG) lateral superlattices. A dc electric current excited by cw terahertz laser radiation shows 1/B-periodic oscillations with an amplitude much larger than the photocurrent at zero magnetic field. Variation of gate voltages applied to individual grating gates of the DGG enables us to change the degree and the sign of the lateral asymmetry in a controllable way. The data reveal that the photocurrent reflects the degree of lateral asymmetry induced by different gate potentials. We show that the magnetic ratchet photocurrent includes the Seebeck thermoratchet effect as well as the effects of linear and circular ratchets, which are sensitive to the corresponding polarization of the driving electromagnetic force. Theoretical analysis performed in the framework of semiclassical approach and taking into account Landau quantization describes the experimental results well.



rate research

Read More

We report on the observation of magnetic quantum ratchet effect in (Cd,Mn)Te- and CdTe-based quantum well structures with an asymmetric lateral dual grating gate superlattice subjected to an external magnetic field applied normal to the quantum well plane. A dc electric current excited by cw terahertz laser radiation shows 1/B-oscillations with an amplitude much larger as compared to the photocurrent at zero magnetic field. We show that the photocurrent is caused by the combined action of a spatially periodic in-plane potential and the spatially modulated radiation due to the near field effects of light diffraction. Magnitude and direction of the photocurrent are determined by the degree of the lateral asymmetry controlled by the variation of voltages applied to the individual gates. The observed magneto-oscillations with enhanced photocurrent amplitude result from Landau quantization and, for (Cd,Mn)Te at low temperatures, from the exchange enhanced Zeeman splitting in diluted magnetic heterostructures. Theoretical analysis, considering the magnetic quantum ratchet effect in the framework of semiclassical approach, describes quite well the experimental results.
189 - P. Sai , S. O. Potashin , M. Szola 2021
We report on the study of the magnetic ratchet effect in AlGaN/GaN heterostructures superimposed with lateral superlattice formed by dual-grating gate structure. We demonstrate that irradiation of the superlattice with terahertz beam results in the dc ratchet current, which shows giant magneto-oscillations in the regime of Shubnikov de Haas oscillations. The oscillations have the same period and are in phase with the resistivity oscillations. Remarkably, their amplitude is greatly enhanced as compared to the ratchet current at zero magnetic field, and the envelope of these oscillations exhibits large beatings as a function of the magnetic field. We demonstrate that the beatings are caused by the spin-orbit splitting of the conduction band. We develop a theory which gives a good qualitative explanation of all experimental observations and allows us to extract the spin-orbit splitting constant alpha_{rm SO}= 7.5 pm 1.5 meV unicode{x212B}. We also discuss how our results are modified by plasmonic effects and show that these effects become more pronounced with decreasing the period of the gating gate structures down to sub-microns.
126 - Y. Koseki , V. Ryzhii , T. Otsuji 2016
We study instability of plasmons in a dual-grating-gate graphene field-effect transistor induced by dc current injection using self-consistent simulations with the Boltzmann equation. With only the acoustic-phonon-limited electron scattering, it is demonstrated that a total growth rate of the plasmon instability, with the terahertz/mid-infrared range of the frequency, can exceed $4times10^{12}$ s$^{-1}$ at room temperature, which is an order of magnitude larger than in two-dimensional electron gases based on usual semiconductors. By Comparing the simulation results with existing theory, it is revealed that the giant total growth rate originates from simulataneous occurence of the so-called Dyakonov-Shur and Ryzhii-Satou-Shur instabilities.
Nanostructures in InAs quantum wells have so far remained outside of the scope of traditional microfabrication techniques based on etching. This is due to parasitic parallel conduction arising from charge carrier accumulation at the physical edges of samples. Here we present a technique which enables the realization of quantum point contacts and quantum dots in two-dimensional electron gases of InAs purely by electrostatic gating. Multiple layers of top gates separated by dielectric layers are employed. Full quantum point contact pinch-off and measurements of Coulomb-blockade diamonds of quantum dots are demonstrated.
Photogalvanic effects are observed and investigated in wurtzite (0001)-oriented GaN/AlGaN low-dimensional structures excited by terahertz radiation. The structures are shown to represent linear quantum ratchets. Experimental and theoretical analysis exhibits that the observed photocurrents are related to the lack of an inversion center in the GaN-based heterojunctions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا