Do you want to publish a course? Click here

Illuminating Gravitational Waves: A Concordant Picture of Photons from a Neutron Star Merger

66   0   0.0 ( 0 )
 Added by Mansi Kasliwal
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Merging neutron stars offer an exquisite laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart EM170817 to gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic dataset, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma-rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultra-relativistic jets. Instead, we suggest that breakout of a wide-angle, mildly-relativistic cocoon engulfing the jet elegantly explains the low-luminosity gamma-rays, the high-luminosity ultraviolet-optical-infrared and the delayed radio/X-ray emission. We posit that all merging neutron stars may lead to a wide-angle cocoon breakout; sometimes accompanied by a successful jet and sometimes a choked jet.



rate research

Read More

We present an effective, low-dimensionality frequency-domain template for the gravitational wave signal from the stellar remnants from binary neutron star coalescence. A principal component decomposition of a suite of numerical simulations of binary neutron star mergers is used to construct orthogonal basis functions for the amplitude and phase spectra of the waveforms for a variety of neutron star equations of state and binary mass configurations. We review the phenomenology of late merger / post-merger gravitational wave emission in binary neutron star coalescence and demonstrate how an understanding of the dynamics during and after the merger leads to the construction of a universal spectrum. We also provide a discussion of the prospects for detecting the post-merger signal in future gravitational wave detectors as a potential contribution to the science case for third generation instruments. The template derived in our analysis achieves $>90%$ match across a wide variety of merger waveforms and strain sensitivity spectra for current and potential gravitational wave detectors. A Fisher matrix analysis yields a preliminary estimate of the typical uncertainty in the determination of the dominant post-merger oscillation frequency $f_{mathrm{peak}}$ as $delta f_{mathrm{peak}} sim 50$Hz. Using recently derived correlations between $f_{mathrm{peak}}$ and the neutron star radii, this suggests potential constraints on the radius of a fiducial neutron star of $sim 220$,m. Such measurements would only be possible for nearby ($sim 30$Mpc) sources with advanced LIGO but become more feasible for planned upgrades to advanced LIGO and other future instruments, leading to constraints on the high density neutron star equation of state which are independent and complementary to those inferred from the pre-merger inspiral gravitational wave signal.
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($lesssim1$ s) and intermediate-duration ($lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{rm rss}^{50%}=2.1times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{rm rss}^{50%}=8.4times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{rm rss}^{50%}=5.9times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
On 2017 August 17, gravitational waves were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical and infrared light curves of SSS17a extending from 10.9 hours to 18 days post-merger. We constrain the radioactively-powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in r-process nucleosynthesis in the Universe.
The merger of two neutron stars has been predicted to produce an optical-infrared transient (lasting a few days) known as a kilonova, powered by the radioactive decay of neutron-rich species synthesized in the merger. Evidence that short gamma-ray bursts also arise from neutron-star mergers has been accumulating. In models of such mergers a small amount of mass ($10^{-4}$-$10^{-2}$ solar masses) with a low electron fraction is ejected at high velocities (0.1-0.3 times light speed) and/or carried out by winds from an accretion disk formed around the newly merged object. This mass is expected to undergo rapid neutron capture (r-process) nucleosynthesis, leading to the formation of radioactive elements that release energy as they decay, powering an electromagnetic transient. A large uncertainty in the composition of the newly synthesized material leads to various expected colours, durations and luminosities for such transients. Observational evidence for kilonovae has so far been inconclusive as it was based on cases of moderate excess emission detected in the afterglows of gamma-ray bursts. Here we report optical to near-infrared observations of a transient coincident with the detection of the gravitational-wave signature of a binary neutron-star merger and of a low-luminosity short-duration gamma-ray burst. Our observations, taken roughly every eight hours over a few days following the gravitational-wave trigger, reveal an initial blue excess, with fast optical fading and reddening. Using numerical models, we conclude that our data are broadly consistent with a light curve powered by a few hundredths of a solar mass of low-opacity material corresponding to lanthanide-poor (a fraction of $10^{-4.5}$ by mass) ejecta.
327 - A. Bauswein 2015
We introduce a classification scheme of the post-merger dynamics and gravitational-wave emission in binary neutron star mergers, after identifying a new mechanism by which a secondary peak in the gravitational-wave spectrum is produced. It is caused by a spiral deformation, the pattern of which rotates slower with respect to the double-core structure in center of the remnant. This secondary peak is typically well separated in frequency from the secondary peak produced by a nonlinear interaction between a quadrupole and a quasi-radial oscillation. The new mechanism allows for an explanation of low-frequency modulations seen in a number of physical characteristics of the remnant, such as the central lapse function, the maximum density and the separation between the two cores. We find empirical relations for both types of secondary peaks between their gravitational-wave frequency and the compactness of nonrotating individual neutron stars, that exist for fixed total binary masses. These findings are derived for equal-mass binaries without intrinsic neutron-star spin analyzing hydrodynamical simulations without magnetic field effects. Our classification scheme may form the basis for the construction of detailed gravitational-wave templates of the post-merger phase. We find that the quasi-radial oscillation frequency of the remnant decreases with the total binary mass. For a given merger event our classification scheme may allow to determine the proximity of the measured total binary mass to the threshold mass for prompt black hole formation, which can, in turn, yield an estimate of the maximum neutron-star mass.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا