No Arabic abstract
We consider pricing and selection with fading channels in a Stackelberg game framework. A channel server decides the channel prices and a client chooses which channel to use based on the remote estimation quality. We prove the existence of an optimal deterministic and Markovian policy for the client, and show that the optimal policies of both the server and the client have threshold structures when the time horizon is finite. Value iteration algorithm is applied to obtain the optimal solutions for both the server and client, and numerical simulations and examples are given to demonstrate the developed result.
One prominent security threat that targets unmanned aerial vehicles (UAVs) is the capture via GPS spoofing in which an attacker manipulates a UAVs global positioning system (GPS) signals in order to capture it. Given the anticipated widespread deployment of UAVs for various purposes, it is imperative to develop new security solutions against such attacks. In this paper, a mathematical framework is introduced for analyzing and mitigating the effects of GPS spoofing attacks on UAVs. In particular, system dynamics are used to model the optimal routes that the UAVs will adopt to reach their destinations. The GPS spoofers effect on each UAVs route is also captured by the model. To this end, the spoofers optimal imposed locations on the UAVs, are analytically derived; allowing the UAVs to predict their traveling routes under attack. Then, a countermeasure mechanism is developed to mitigate the effect of the GPS spoofing attack. The countermeasure is built on the premise of cooperative localization, in which a UAV can determine its location using nearby UAVs instead of the possibly compromised GPS locations. To better utilize the proposed defense mechanism, a dynamic Stackelberg game is formulated to model the interactions between a GPS spoofer and a drone operator. In particular, the drone operator acts as the leader that determines its optimal strategy in light of the spoofers expected response strategy. The equilibrium strategies of the game are then analytically characterized and studied through a novel proposed algorithm. Simulation results show that, when combined with the Stackelberg strategies, the proposed defense mechanism will outperform baseline strategy selection techniques in terms of reducing the possibility of UAV capture
Optimum decision fusion in the presence of malicious nodes - often referred to as Byzantines - is hindered by the necessity of exactly knowing the statistical behavior of Byzantines. By focusing on a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary decision about a sequence of system states by relying on the possibly corrupted decisions provided by local nodes, we propose a game-theoretic framework which permits to exploit the superior performance provided by optimum decision fusion, while limiting the amount of a-priori knowledge required. We first derive the optimum decision strategy by assuming that the statistical behavior of the Byzantines is known. Then we relax such an assumption by casting the problem into a game-theoretic framework in which the FC tries to guess the behavior of the Byzantines, which, in turn, must fix their corruption strategy without knowing the guess made by the FC. We use numerical simulations to derive the equilibrium of the game, thus identifying the optimum behavior for both the FC and the Byzantines, and to evaluate the achievable performance at the equilibrium. We analyze several different setups, showing that in all cases the proposed solution permits to improve the accuracy of data fusion. We also show that, in some instances, it is preferable for the Byzantines to minimize the mutual information between the status of the observed system and the reports submitted to the FC, rather than always flipping the decision made by the local nodes as it is customarily assumed in previous works.
Large software platforms (e.g., mobile app stores, social media, email service providers) must ensure that files on their platform do not contain malicious code. Platform hosts use security tools to analyze those files for potential malware. However, given the expensive runtimes of tools coupled with the large number of exchanged files, platforms are not able to run all tools on every incoming file. Moreover, malicious parties look to find gaps in the coverage of the analysis tools, and exchange files containing malware that exploits these vulnerabilities. To address this problem, we present a novel approach that models the relationship between malicious parties and the security analyst as a leader-follower Stackelberg security game. To estimate the parameters of our model, we have combined the information from the VirusTotal dataset with the more detailed reports from the National Vulnerability Database. Compared to a set of natural baselines, we show that our model computes an optimal randomization over sets of available security analysis tools.
In timeline-based planning, domains are described as sets of independent, but interacting, components, whose behaviour over time (the set of timelines) is governed by a set of temporal constraints. A distinguishing feature of timeline-based planning systems is the ability to integrate planning with execution by synthesising control strategies for flexible plans. However, flexible plans can only represent temporal uncertainty, while more complex forms of nondeterminism are needed to deal with a wider range of realistic problems. In this paper, we propose a novel game-theoretic approach to timeline-based planning problems, generalising the state of the art while uniformly handling temporal uncertainty and nondeterminism. We define a general concept of timeline-based game and we show that the notion of winning strategy for these games is strictly more general than that of control strategy for dynamically controllable flexible plans. Moreover, we show that the problem of establishing the existence of such winning strategies is decidable using a doubly exponential amount of space.
We consider the design of a fair sensor schedule for a number of sensors monitoring different linear time-invariant processes. The largest average remote estimation error among all processes is to be minimized. We first consider a general setup for the max-min fair allocation problem. By reformulating the problem as its equivalent form, we transform the fair resource allocation problem into a zero-sum game between a judge and a resource allocator. We propose an equilibrium seeking procedure and show that there exists a unique Nash equilibrium in pure strategy for this game. We then apply the result to the sensor scheduling problem and show that the max-min fair sensor scheduling policy can be achieved.