No Arabic abstract
The direct detection of gravitational waves (GW) from merging binary black holes and neutron stars mark the beginning of a new era in gravitational physics, and it brings forth new opportunities to test theories of gravity. To this end, it is crucial to search for anomalous deviations from general relativity in a model-independent way, irrespective of gravity theories, GW sources, and background spacetimes. In this paper, we propose a new universal framework for testing gravity with GW, based on the generalized propagation of a GW in an effective field theory that describes modification of gravity at cosmological scales. Then we perform a parameter estimation study, showing how well the future observation of GW can constrain the model parameters in the generalized models of GW propagation.
The properties of gravitational-wave (GW) propagation are modified in alternative theories of gravity and are crucial observables to test gravity at cosmological distance. The propagation speed has already been measured from GW170817 so precisely and pinned down to the speed of light, while other properties of GW propagation have not constrained tightly yet. In this paper, we investigate the measurement precisions of the amplitude damping rate (equivalently, the time variation of the gravitational coupling for GWs) and graviton mass in the generalized framework of GW propagation with the future detectors such as Voyager, Cosmic Explorer, and Einstein Telescope. As a result, we show that the future GW observation can reach 1% error for the amplitude damping. We also study the time variation of the gravitational couplings in Horndeski theory by performing Monte Carlo-based numerical simulations. From the simulation results, we find that the current accelerating Universe prefers the models with less damping of GWs and that the equivalence principle can be tested at the level of 1% by the future GW observation.
The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test alternative theories of gravity. In this contribution we describe how to use observations of extreme-mass-ratio inspirals by the future Laser Interferometer Space Antenna to test a particular class of theories: Chern-Simons modified gravity.
It is standard practice to study the lensing of gravitational waves (GW) using the geometric optics regime. However, in many astrophysical configurations this regime breaks down as the wavelength becomes comparable to the Schwarzschild radius of the lens. We revisit the lensing of GW including corrections beyond geometric optics. We propose a perturbative method for calculating these corrections simply solving first order decoupled differential equations. We study the behavior of a single ray and find that the polarization plane defined in geometric optics is smeared due to diffraction effects, which leads to the rise of apparent vector and scalar polarization modes. We analyze how these modes depend on the observer choice, and we study the impact of diffraction on the pseudo-stress energy momentum tensor of the gravitational field.
It has been recently shown that quadruply lensed gravitational-wave (GW) events due to coalescing binaries can be localized to one or just a few galaxies, even in the absence of an electromagnetic counterpart. We discuss how this can be used to extract information on modified GW propagation, which is a crucial signature of modifications of gravity at cosmological scales. We show that, using quadruply lensed systems, it is possible to constrain the parameter $Xi_0$ that characterizes modified GW propagation, without the need of imposing a prior on $H_0$. A LIGO/Virgo/Kagra network at target sensitivity might already get a significant measurement of $Xi_0$, while a third generation GW detector such as the Einstein Telescope could reach a very interesting accuracy.
Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically also predict deviations from general relativity in the propagation of GWs across cosmological distances, even in theories where the speed of gravity is equal to $c$. We find that, in generic modified gravity models, the effect of modified GW propagation dominates over that of $w_{rm DE}(z)$, making modified GW propagation a crucial observable for dark energy studies with standard sirens. We present a convenient parametrization of the effect in terms of two parameters $(Xi_0,n)$, analogue to the $(w_0,w_a)$ parametrization of the dark energy equation of state, and we give a limit from the LIGO/Virgo measurement of $H_0$ with the neutron star binary GW170817. We then perform a Markov Chain Monte Carlo analysis to estimate the sensitivity of the Einstein Telescope (ET) to the cosmological parameters, including $(Xi_0,n)$, both using only standard sirens, and combining them with other cosmological datasets. In particular, the Hubble parameter can be measured with an accuracy better than $1%$ already using only standard sirens while, when combining ET with current CMB+BAO+SNe data, $Xi_0$ can be measured to $0.8%$ . We discuss the predictions for modified GW propagation of a specific nonlocal modification of gravity, recently developed by our group, and we show that they are within the reach of ET. Modified GW propagation also affects the GW transfer function, and therefore the tensor contribution to the ISW effect.