Detection of squeezing by on-chip glass-integrated homodyne analyzer


Abstract in English

We design and demonstrate on-chip homodyne detection operating in the quantum regime, i.e. able to detect genuine nonclassical features. Our setup exploits a glass-integrated homodyne analyzer (IHA) entirely fabricated by femtosecond laser micromachining. The IHA incorporates on the same chip a balanced waveguide beam splitter and a thermo-optic phase shifter, allowing us to record homodyne traces at different phases and to perform reliable quantum state tomography. In particular, we show that the IHA allows for the detection of nonclassical features of continuous-variable quantum states, such as squeezed states.

Download