Do you want to publish a course? Click here

Integration through transients for inelastic hard sphere fluids

121   0   0.0 ( 0 )
 Added by Wolf Till Kranz
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the rheological properties of inelastic hard spheres in steady shear flow for general shear rates and densities. Starting from the microscopic dynamics we generalise the Integration Through Transients (textsc{itt}) formalism to a fluid of dissipative, randomly driven granular particles. The stress relaxation function is computed approximately within a mode-coupling theory---based on the physical picture, that relaxation of shear is dominated by slow structural relaxation, as the glass transition is approached. The transient build-up of stress in steady shear is thus traced back to transient density correlations which are computed self-consistently within mode-coupling theory. The glass transition is signalled by the appearance of a yield stress and a divergence of the Newtonian viscosity, characterizing linear response. For shear rates comparable to the structural relaxation time, the stress becomes independent of shear rate and we observe shear thinning, while for the largest shear rates Bagnold scaling, i.e., a quadratic increase of shear stress with shear rate, is recovered. The rheological properties are qualitatively similar for all values of $varepsilon$, the coefficient of restitution; however, the magnitude of the stress as well as the range of shear thinning and thickening show significant dependence on the inelasticity.



rate research

Read More

Discontinuous shear thickening (DST) observed in many dense athermal suspensions has proven difficult to understand and to reproduce by numerical simulation. By introducing a numerical scheme including both relevant hydrodynamic interactions and granularlike contacts, we show that contact friction is essential for having DST. Above a critical volume fraction, we observe the existence of two states: a low viscosity, contactless (hence, frictionless) state, and a high viscosity frictional shear jammed state. These two states are separated by a critical shear stress, associated with a critical shear rate where DST occurs. The shear jammed state is reminiscent of the jamming phase of granular matter. Continuous shear thickening is seen as a lower volume fraction vestige of the jamming transition.
Considering a granular fluid of inelastic smooth hard spheres we discuss the conditions delineating the rheological regimes comprising Newtonian, Bagnoldian, shear thinning, and shear thickening behavior. Developing a kinetic theory, valid at finite shear rates and densities around the glass transition density, we predict the viscosity and Bagnold coefficient at practically relevant values of the control parameters. The determination of full flow curves relating the shear stress $sigma$ to the shear rate $dotgamma$, and predictions of the yield stress complete our discussion of granular rheology derived from first principles.
The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields. The case of continuous polydispersity thereby becomes tractable. We predict, generically, an oscillatory size segregation close to the wall, and connect this, by a perturbation theory for narrow distributions, with the reversible work for changing the size of one particle in a monodisperse reference fluid.
Numerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels which significantly complicate their numerical integration. We investigate the intermediate scattering functions and the susceptibility spectra close to structural arrest and compare to an asymptotic analysis of the MCT equations. We corroborate that the data converge in the $beta$-scaling regime to two asymptotic power laws, viz. the critical decay and the von Schweidler law. The numerical results reveal a non-monotonic dependence of the power-law exponents on the slab width and a non-trivial kink in the low-frequency susceptibility spectra. We also find qualitative agreement of these theoretical results to event-driven molecular-dynamics simulations of polydisperse hard-sphere system. In particular, the non-trivial dependence of the dynamical properties on the slab width is well reproduced.
The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route ($mu$ route). As a consistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxters model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the $mu$ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the $mu$ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا