Do you want to publish a course? Click here

Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz

99   0   0.0 ( 0 )
 Added by Stefan Wagner
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.



rate research

Read More

120 - A.Portaa 2009
Double Chooz main target is to measure Theta13 oscillation parameter by comparing reactor neutrino fluxes in two identical detectors located respectively at 400 m and 1 km away from the 2 Chooz reactor cores. The far detector is now under construction, while we have just completed the design phase of the near one. In this report I will discuss the detector principle, sensitivity and its present construction status.
We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.
The Double Chooz experiment measures the neutrino mixing angle $theta_{13}$ by detecting reactor $bar{ u}_e$ via inverse beta decay. The positron-neutron space and time coincidence allows for a sizable background rejection, nonetheless liquid scintillator detectors would profit from a positron/electron discrimination, if feasible in large detector, to suppress the remaining background. Standard particle identification, based on particle dependent time profile of photon emission in liquid scintillator, can not be used given the identical mass of the two particles. However, the positron annihilation is sometimes delayed by the ortho-positronium (o-Ps) metastable state formation, which induces a pulse shape distortion that could be used for positron identification. In this paper we report on the first observation of positronium formation in a large liquid scintillator detector based on pulse shape analysis of single events. The o-Ps formation fraction and its lifetime were measured, finding the values of 44$%$ $pm$ 12$%$ (sys.) $pm$ 5$%$ (stat.) and $3.68$ns $pm$ 0.17ns (sys.) $pm$ 0.15ns (stat.) respectively, in agreement with the results obtained with a dedicated positron annihilation lifetime spectroscopy setup.
Simulations of photon propagation in scintillation detectors were performed with the aim to find the optimal scintillator geometry, surface treatment, and shape of external reflector in order to achieve maximum light collection efficiency for detector configurations that avoid direct optical coupling, a situation that is commonly found in cryogenic scintillating bolometers in experimental searches for double beta decay and dark matter. To evaluate the light collection efficiency of various geometrical configurations we used the ZEMAX ray-tracing software. It was found that scintillators in the shape of a triangular prism with an external mirror shaped as truncated cone gives the highest light collection efficiency. The results of the simulations were confirmed by carrying out measurements of the light collection efficiencies of CaWO4 crystal scintillators. A comparison of simulated and measured values of light output shows good agreement
Compelling experimental evidences of neutrino oscillations and their implication that neutrinos are massive particles have given neutrinoless double beta decay a central role in astroparticle physics. In fact, the discovery of this elusive decay would be a major breakthrough, unveiling that neutrino and antineutrino are the same particle and that the lepton number is not conserved. It would also impact our efforts to establish the absolute neutrino mass scale and, ultimately, understand elementary particle interaction unification. All current experimental programs to search for neutrinoless double beta decay are facing with the technical and financial challenge of increasing the experimental mass while maintaining incredibly low levels of spurious background. The new concept described in this paper could be the answer which combines all the features of an ideal experiment: energy resolution, low cost mass scalability, isotope choice flexibility and many powerful handles to make the background negligible. The proposed technology is based on the use of arrays of silicon detectors cooled to 120 K to optimize the collection of the scintillation light emitted by ultra-pure crystals. It is shown that with a 54 kg array of natural CaMoO4 scintillation detectors of this type it is possible to yield a competitive sensitivity on the half-life of the neutrinoless double beta decay of 100Mo as high as ~10E24 years in only one year of data taking. The same array made of 40CaMoO4 scintillation detectors (to get rid of the continuous background coming from the two neutrino double beta decay of 48Ca) will instead be capable of achieving the remarkable sensitivity of ~10E25 years on the half-life of 100Mo neutrinoless double beta decay in only one year of measurement.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا